Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtbiri | GIF version |
Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
mtbiri.min | ⊢ ¬ 𝜒 |
mtbiri.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mtbiri | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbiri.min | . 2 ⊢ ¬ 𝜒 | |
2 | mtbiri.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimpd 143 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 1, 3 | mtoi 654 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: n0i 3414 axnul 4107 intexr 4129 intnexr 4130 iin0r 4148 exmid01 4177 ordtriexmidlem 4496 ordtriexmidlem2 4497 ordtri2or2exmidlem 4503 onsucelsucexmidlem 4506 sucprcreg 4526 preleq 4532 reg3exmidlemwe 4556 dcextest 4558 nn0eln0 4597 0nelelxp 4633 canth 5796 tfrlemisucaccv 6293 nnsucuniel 6463 nndceq 6467 nndcel 6468 2dom 6771 snnen2oprc 6826 snexxph 6915 elfi2 6937 djune 7043 updjudhcoinrg 7046 omp1eomlem 7059 nnnninfeq 7092 ismkvnex 7119 mkvprop 7122 omniwomnimkv 7131 exmidfodomrlemrALT 7159 exmidaclem 7164 elni2 7255 ltsopi 7261 ltsonq 7339 renepnf 7946 renemnf 7947 lt0ne0d 8411 sup3exmid 8852 nnne0 8885 nn0ge2m1nn 9174 nn0nepnf 9185 xrltnr 9715 pnfnlt 9723 nltmnf 9724 xrltnsym 9729 xrlttri3 9733 nltpnft 9750 ngtmnft 9753 xrrebnd 9755 xrpnfdc 9778 xrmnfdc 9779 xsubge0 9817 xposdif 9818 xleaddadd 9823 fzpreddisj 10006 fzm1 10035 exfzdc 10175 xrbdtri 11217 m1exp1 11838 3prm 12060 prmdc 12062 pcgcd1 12259 pc2dvds 12261 pcmpt 12273 exmidunben 12359 unct 12375 blssioo 13195 pilem3 13354 lgsval2lem 13561 bj-charfunbi 13703 bj-intexr 13800 bj-intnexr 13801 subctctexmid 13891 nninfsellemeq 13904 exmidsbthrlem 13911 |
Copyright terms: Public domain | W3C validator |