![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtbiri | GIF version |
Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
mtbiri.min | ⊢ ¬ 𝜒 |
mtbiri.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mtbiri | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbiri.min | . 2 ⊢ ¬ 𝜒 | |
2 | mtbiri.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimpd 143 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 1, 3 | mtoi 626 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-in1 580 ax-in2 581 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: n0i 3292 axnul 3970 intexr 3992 intnexr 3993 iin0r 4010 exmid01 4038 ordtriexmidlem 4349 ordtriexmidlem2 4350 ordtri2or2exmidlem 4355 onsucelsucexmidlem 4358 sucprcreg 4378 preleq 4384 reg3exmidlemwe 4407 dcextest 4409 nn0eln0 4446 0nelelxp 4480 tfrlemisucaccv 6104 nnsucuniel 6270 nndceq 6274 nndcel 6275 2dom 6576 snnen2oprc 6630 snexxph 6713 djune 6823 updjudhcoinrg 6826 exmidfodomrlemrALT 6890 elni2 6934 ltsopi 6940 ltsonq 7018 renepnf 7596 renemnf 7597 lt0ne0d 8052 nnne0 8511 nn0ge2m1nn 8794 nn0nepnf 8805 xrltnr 9311 pnfnlt 9318 nltmnf 9319 xrltnsym 9324 xrlttri3 9328 nltpnft 9340 ngtmnft 9341 xrrebnd 9342 fzpreddisj 9546 fzm1 9575 exfzdc 9712 m1exp1 11240 3prm 11449 bj-intexr 12072 bj-intnexr 12073 nninfalllemn 12170 nninfsellemeq 12178 exmidsbthrlem 12184 |
Copyright terms: Public domain | W3C validator |