ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvexv1 GIF version

Theorem cbvexv1 1745
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 1749 with a disjoint variable condition. See cbvexvw 1913 for a version with two disjoint variable conditions, and cbvexv 1911 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1 𝑦𝜑
cbvalv1.nf2 𝑥𝜓
cbvalv1.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvexv1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvexv1
StepHypRef Expression
1 cbvalv1.nf2 . . . 4 𝑥𝜓
21nfex 1630 . . 3 𝑥𝑦𝜓
3 cbvalv1.nf1 . . . . . 6 𝑦𝜑
43nfri 1512 . . . . 5 (𝜑 → ∀𝑦𝜑)
5 cbvalv1.1 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜓))
65bicomd 140 . . . . . 6 (𝑥 = 𝑦 → (𝜓𝜑))
76equcoms 1701 . . . . 5 (𝑦 = 𝑥 → (𝜓𝜑))
84, 7equsex 1721 . . . 4 (∃𝑦(𝑦 = 𝑥𝜓) ↔ 𝜑)
9 exsimpr 1611 . . . 4 (∃𝑦(𝑦 = 𝑥𝜓) → ∃𝑦𝜓)
108, 9sylbir 134 . . 3 (𝜑 → ∃𝑦𝜓)
112, 10exlimi 1587 . 2 (∃𝑥𝜑 → ∃𝑦𝜓)
123nfex 1630 . . 3 𝑦𝑥𝜑
131nfri 1512 . . . . 5 (𝜓 → ∀𝑥𝜓)
1413, 5equsex 1721 . . . 4 (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
15 exsimpr 1611 . . . 4 (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
1614, 15sylbir 134 . . 3 (𝜓 → ∃𝑥𝜑)
1712, 16exlimi 1587 . 2 (∃𝑦𝜓 → ∃𝑥𝜑)
1811, 17impbii 125 1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wnf 1453  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  cbvrexfw  2688  fprod2dlemstep  11585
  Copyright terms: Public domain W3C validator