| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvexv1 | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 1770 with a disjoint variable condition. See cbvexvw 1935 for a version with two disjoint variable conditions, and cbvexv 1933 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
| cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
| cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvexv1 | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalv1.nf2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | nfex 1651 | . . 3 ⊢ Ⅎ𝑥∃𝑦𝜓 |
| 3 | cbvalv1.nf1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 3 | nfri 1533 | . . . . 5 ⊢ (𝜑 → ∀𝑦𝜑) |
| 5 | cbvalv1.1 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | bicomd 141 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜑)) |
| 7 | 6 | equcoms 1722 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) |
| 8 | 4, 7 | equsex 1742 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝑥 ∧ 𝜓) ↔ 𝜑) |
| 9 | exsimpr 1632 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝑥 ∧ 𝜓) → ∃𝑦𝜓) | |
| 10 | 8, 9 | sylbir 135 | . . 3 ⊢ (𝜑 → ∃𝑦𝜓) |
| 11 | 2, 10 | exlimi 1608 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑦𝜓) |
| 12 | 3 | nfex 1651 | . . 3 ⊢ Ⅎ𝑦∃𝑥𝜑 |
| 13 | 1 | nfri 1533 | . . . . 5 ⊢ (𝜓 → ∀𝑥𝜓) |
| 14 | 13, 5 | equsex 1742 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
| 15 | exsimpr 1632 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥𝜑) | |
| 16 | 14, 15 | sylbir 135 | . . 3 ⊢ (𝜓 → ∃𝑥𝜑) |
| 17 | 12, 16 | exlimi 1608 | . 2 ⊢ (∃𝑦𝜓 → ∃𝑥𝜑) |
| 18 | 11, 17 | impbii 126 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 Ⅎwnf 1474 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: cbvrexfw 2720 fprod2dlemstep 11787 |
| Copyright terms: Public domain | W3C validator |