Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvexv1 | GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 1749 with a disjoint variable condition. See cbvexvw 1913 for a version with two disjoint variable conditions, and cbvexv 1911 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexv1 | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalv1.nf2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | nfex 1630 | . . 3 ⊢ Ⅎ𝑥∃𝑦𝜓 |
3 | cbvalv1.nf1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
4 | 3 | nfri 1512 | . . . . 5 ⊢ (𝜑 → ∀𝑦𝜑) |
5 | cbvalv1.1 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 5 | bicomd 140 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜑)) |
7 | 6 | equcoms 1701 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) |
8 | 4, 7 | equsex 1721 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝑥 ∧ 𝜓) ↔ 𝜑) |
9 | exsimpr 1611 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝑥 ∧ 𝜓) → ∃𝑦𝜓) | |
10 | 8, 9 | sylbir 134 | . . 3 ⊢ (𝜑 → ∃𝑦𝜓) |
11 | 2, 10 | exlimi 1587 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑦𝜓) |
12 | 3 | nfex 1630 | . . 3 ⊢ Ⅎ𝑦∃𝑥𝜑 |
13 | 1 | nfri 1512 | . . . . 5 ⊢ (𝜓 → ∀𝑥𝜓) |
14 | 13, 5 | equsex 1721 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
15 | exsimpr 1611 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥𝜑) | |
16 | 14, 15 | sylbir 134 | . . 3 ⊢ (𝜓 → ∃𝑥𝜑) |
17 | 12, 16 | exlimi 1587 | . 2 ⊢ (∃𝑦𝜓 → ∃𝑥𝜑) |
18 | 11, 17 | impbii 125 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 Ⅎwnf 1453 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: cbvrexfw 2688 fprod2dlemstep 11585 |
Copyright terms: Public domain | W3C validator |