![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvexv1 | GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 1756 with a disjoint variable condition. See cbvexvw 1920 for a version with two disjoint variable conditions, and cbvexv 1918 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexv1 | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalv1.nf2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | nfex 1637 | . . 3 ⊢ Ⅎ𝑥∃𝑦𝜓 |
3 | cbvalv1.nf1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
4 | 3 | nfri 1519 | . . . . 5 ⊢ (𝜑 → ∀𝑦𝜑) |
5 | cbvalv1.1 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 5 | bicomd 141 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜑)) |
7 | 6 | equcoms 1708 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) |
8 | 4, 7 | equsex 1728 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝑥 ∧ 𝜓) ↔ 𝜑) |
9 | exsimpr 1618 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝑥 ∧ 𝜓) → ∃𝑦𝜓) | |
10 | 8, 9 | sylbir 135 | . . 3 ⊢ (𝜑 → ∃𝑦𝜓) |
11 | 2, 10 | exlimi 1594 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑦𝜓) |
12 | 3 | nfex 1637 | . . 3 ⊢ Ⅎ𝑦∃𝑥𝜑 |
13 | 1 | nfri 1519 | . . . . 5 ⊢ (𝜓 → ∀𝑥𝜓) |
14 | 13, 5 | equsex 1728 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
15 | exsimpr 1618 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥𝜑) | |
16 | 14, 15 | sylbir 135 | . . 3 ⊢ (𝜓 → ∃𝑥𝜑) |
17 | 12, 16 | exlimi 1594 | . 2 ⊢ (∃𝑦𝜓 → ∃𝑥𝜑) |
18 | 11, 17 | impbii 126 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 Ⅎwnf 1460 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: cbvrexfw 2696 fprod2dlemstep 11632 |
Copyright terms: Public domain | W3C validator |