ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbval GIF version

Theorem cbval 1778
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.)
Hypotheses
Ref Expression
cbval.1 𝑦𝜑
cbval.2 𝑥𝜓
cbval.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbval (∀𝑥𝜑 ↔ ∀𝑦𝜓)

Proof of Theorem cbval
StepHypRef Expression
1 cbval.1 . . 3 𝑦𝜑
21nfri 1543 . 2 (𝜑 → ∀𝑦𝜑)
3 cbval.2 . . 3 𝑥𝜓
43nfri 1543 . 2 (𝜓 → ∀𝑥𝜓)
5 cbval.3 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
62, 4, 5cbvalh 1777 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371  wnf 1484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485
This theorem is referenced by:  sb8  1880  cbval2  1946  sb8eu  2068  abbi  2320  cleqf  2374  cbvralf  2731  ralab2  2938  cbvralcsf  3157  dfss2f  3185  elintab  3898  cbviota  5242  sb8iota  5244  dffun6f  5289  dffun4f  5292  mptfvex  5672  findcard2  6993  findcard2s  6994
  Copyright terms: Public domain W3C validator