![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbval | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) |
Ref | Expression |
---|---|
cbval.1 | ⊢ Ⅎ𝑦𝜑 |
cbval.2 | ⊢ Ⅎ𝑥𝜓 |
cbval.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbval | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbval.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfri 1519 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) |
3 | cbval.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | nfri 1519 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
5 | cbval.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 2, 4, 5 | cbvalh 1753 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 Ⅎwnf 1460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: sb8 1856 cbval2 1921 sb8eu 2039 abbi 2291 cleqf 2344 cbvralf 2697 ralab2 2903 cbvralcsf 3121 dfss2f 3148 elintab 3857 cbviota 5185 sb8iota 5187 dffun6f 5231 dffun4f 5234 mptfvex 5603 findcard2 6891 findcard2s 6892 |
Copyright terms: Public domain | W3C validator |