| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbval | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) |
| Ref | Expression |
|---|---|
| cbval.1 | ⊢ Ⅎ𝑦𝜑 |
| cbval.2 | ⊢ Ⅎ𝑥𝜓 |
| cbval.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbval | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbval.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfri 1543 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) |
| 3 | cbval.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | nfri 1543 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
| 5 | cbval.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 2, 4, 5 | cbvalh 1777 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: sb8 1880 cbval2 1946 sb8eu 2068 abbi 2320 cleqf 2374 cbvralf 2731 ralab2 2938 cbvralcsf 3157 dfss2f 3185 elintab 3898 cbviota 5242 sb8iota 5244 dffun6f 5289 dffun4f 5292 mptfvex 5672 findcard2 6993 findcard2s 6994 |
| Copyright terms: Public domain | W3C validator |