| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbval | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) |
| Ref | Expression |
|---|---|
| cbval.1 | ⊢ Ⅎ𝑦𝜑 |
| cbval.2 | ⊢ Ⅎ𝑥𝜓 |
| cbval.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbval | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbval.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfri 1545 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) |
| 3 | cbval.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | nfri 1545 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
| 5 | cbval.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 2, 4, 5 | cbvalh 1779 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1373 Ⅎwnf 1486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 |
| This theorem is referenced by: sb8 1882 cbval2 1948 sb8eu 2070 abbi 2323 cleqf 2377 cbvralf 2736 ralab2 2947 cbvralcsf 3167 dfss2f 3195 elintab 3913 cbviota 5259 sb8iota 5262 dffun6f 5307 dffun4f 5310 mptfvex 5693 findcard2 7019 findcard2s 7020 |
| Copyright terms: Public domain | W3C validator |