ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbval GIF version

Theorem cbval 1780
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.)
Hypotheses
Ref Expression
cbval.1 𝑦𝜑
cbval.2 𝑥𝜓
cbval.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbval (∀𝑥𝜑 ↔ ∀𝑦𝜓)

Proof of Theorem cbval
StepHypRef Expression
1 cbval.1 . . 3 𝑦𝜑
21nfri 1545 . 2 (𝜑 → ∀𝑦𝜑)
3 cbval.2 . . 3 𝑥𝜓
43nfri 1545 . 2 (𝜓 → ∀𝑥𝜓)
5 cbval.3 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
62, 4, 5cbvalh 1779 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1373  wnf 1486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560
This theorem depends on definitions:  df-bi 117  df-nf 1487
This theorem is referenced by:  sb8  1882  cbval2  1948  sb8eu  2070  abbi  2323  cleqf  2377  cbvralf  2736  ralab2  2947  cbvralcsf  3167  dfss2f  3195  elintab  3913  cbviota  5259  sb8iota  5262  dffun6f  5307  dffun4f  5310  mptfvex  5693  findcard2  7019  findcard2s  7020
  Copyright terms: Public domain W3C validator