ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbval GIF version

Theorem cbval 1742
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.)
Hypotheses
Ref Expression
cbval.1 𝑦𝜑
cbval.2 𝑥𝜓
cbval.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbval (∀𝑥𝜑 ↔ ∀𝑦𝜓)

Proof of Theorem cbval
StepHypRef Expression
1 cbval.1 . . 3 𝑦𝜑
21nfri 1507 . 2 (𝜑 → ∀𝑦𝜑)
3 cbval.2 . . 3 𝑥𝜓
43nfri 1507 . 2 (𝜓 → ∀𝑥𝜓)
5 cbval.3 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
62, 4, 5cbvalh 1741 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341  wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  sb8  1844  cbval2  1909  sb8eu  2027  abbi  2280  cleqf  2333  cbvralf  2685  ralab2  2890  cbvralcsf  3107  dfss2f  3133  elintab  3835  cbviota  5158  sb8iota  5160  dffun6f  5201  dffun4f  5204  mptfvex  5571  findcard2  6855  findcard2s  6856
  Copyright terms: Public domain W3C validator