Step | Hyp | Ref
| Expression |
1 | | ax-17 1514 |
. . . . 5
⊢ ((𝜑 ↔ 𝑥 = 𝑧) → ∀𝑤(𝜑 ↔ 𝑥 = 𝑧)) |
2 | 1 | sb8h 1842 |
. . . 4
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑤[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧)) |
3 | | sbbi 1947 |
. . . . . 6
⊢ ([𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧)) |
4 | | sb8euh.1 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑦𝜑) |
5 | 4 | hbsb 1937 |
. . . . . . 7
⊢ ([𝑤 / 𝑥]𝜑 → ∀𝑦[𝑤 / 𝑥]𝜑) |
6 | | equsb3 1939 |
. . . . . . . 8
⊢ ([𝑤 / 𝑥]𝑥 = 𝑧 ↔ 𝑤 = 𝑧) |
7 | | ax-17 1514 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → ∀𝑦 𝑤 = 𝑧) |
8 | 6, 7 | hbxfrbi 1460 |
. . . . . . 7
⊢ ([𝑤 / 𝑥]𝑥 = 𝑧 → ∀𝑦[𝑤 / 𝑥]𝑥 = 𝑧) |
9 | 5, 8 | hbbi 1536 |
. . . . . 6
⊢ (([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧) → ∀𝑦([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧)) |
10 | 3, 9 | hbxfrbi 1460 |
. . . . 5
⊢ ([𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) → ∀𝑦[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧)) |
11 | | ax-17 1514 |
. . . . 5
⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) → ∀𝑤[𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧)) |
12 | | sbequ 1828 |
. . . . 5
⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ [𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧))) |
13 | 10, 11, 12 | cbvalh 1741 |
. . . 4
⊢
(∀𝑤[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦[𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧)) |
14 | | equsb3 1939 |
. . . . . 6
⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) |
15 | 14 | sblbis 1948 |
. . . . 5
⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
16 | 15 | albii 1458 |
. . . 4
⊢
(∀𝑦[𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
17 | 2, 13, 16 | 3bitri 205 |
. . 3
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
18 | 17 | exbii 1593 |
. 2
⊢
(∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∃𝑧∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
19 | | df-eu 2017 |
. 2
⊢
(∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) |
20 | | df-eu 2017 |
. 2
⊢
(∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑧∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
21 | 18, 19, 20 | 3bitr4i 211 |
1
⊢
(∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |