Step | Hyp | Ref
| Expression |
1 | | strcoll2 13865 |
. 2
⊢
(∀𝑥 ∈
𝑎 ∃𝑦𝜑 → ∃𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ∧ ∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑)) |
2 | | nfnf1 1532 |
. . . . 5
⊢
Ⅎ𝑏Ⅎ𝑏𝜑 |
3 | 2 | nfal 1564 |
. . . 4
⊢
Ⅎ𝑏∀𝑦Ⅎ𝑏𝜑 |
4 | 3 | nfal 1564 |
. . 3
⊢
Ⅎ𝑏∀𝑥∀𝑦Ⅎ𝑏𝜑 |
5 | | nfa1 1529 |
. . . . 5
⊢
Ⅎ𝑥∀𝑥∀𝑦Ⅎ𝑏𝜑 |
6 | | nfcvd 2309 |
. . . . 5
⊢
(∀𝑥∀𝑦Ⅎ𝑏𝜑 → Ⅎ𝑏𝑎) |
7 | | nfa1 1529 |
. . . . . . 7
⊢
Ⅎ𝑦∀𝑦Ⅎ𝑏𝜑 |
8 | 7 | nfal 1564 |
. . . . . 6
⊢
Ⅎ𝑦∀𝑥∀𝑦Ⅎ𝑏𝜑 |
9 | | nfcvd 2309 |
. . . . . 6
⊢
(∀𝑥∀𝑦Ⅎ𝑏𝜑 → Ⅎ𝑏𝑧) |
10 | | sp 1499 |
. . . . . . 7
⊢
(∀𝑦Ⅎ𝑏𝜑 → Ⅎ𝑏𝜑) |
11 | 10 | sps 1525 |
. . . . . 6
⊢
(∀𝑥∀𝑦Ⅎ𝑏𝜑 → Ⅎ𝑏𝜑) |
12 | 8, 9, 11 | nfrexdxy 2500 |
. . . . 5
⊢
(∀𝑥∀𝑦Ⅎ𝑏𝜑 → Ⅎ𝑏∃𝑦 ∈ 𝑧 𝜑) |
13 | 5, 6, 12 | nfraldxy 2499 |
. . . 4
⊢
(∀𝑥∀𝑦Ⅎ𝑏𝜑 → Ⅎ𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑) |
14 | 5, 6, 11 | nfrexdxy 2500 |
. . . . 5
⊢
(∀𝑥∀𝑦Ⅎ𝑏𝜑 → Ⅎ𝑏∃𝑥 ∈ 𝑎 𝜑) |
15 | 8, 9, 14 | nfraldxy 2499 |
. . . 4
⊢
(∀𝑥∀𝑦Ⅎ𝑏𝜑 → Ⅎ𝑏∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑) |
16 | 13, 15 | nfand 1556 |
. . 3
⊢
(∀𝑥∀𝑦Ⅎ𝑏𝜑 → Ⅎ𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ∧ ∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑)) |
17 | | nfv 1516 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 = 𝑏 |
18 | 5, 17 | nfan 1553 |
. . . . . 6
⊢
Ⅎ𝑥(∀𝑥∀𝑦Ⅎ𝑏𝜑 ∧ 𝑧 = 𝑏) |
19 | | rexeq 2662 |
. . . . . . 7
⊢ (𝑧 = 𝑏 → (∃𝑦 ∈ 𝑧 𝜑 ↔ ∃𝑦 ∈ 𝑏 𝜑)) |
20 | 19 | adantl 275 |
. . . . . 6
⊢
((∀𝑥∀𝑦Ⅎ𝑏𝜑 ∧ 𝑧 = 𝑏) → (∃𝑦 ∈ 𝑧 𝜑 ↔ ∃𝑦 ∈ 𝑏 𝜑)) |
21 | 18, 20 | ralbid 2464 |
. . . . 5
⊢
((∀𝑥∀𝑦Ⅎ𝑏𝜑 ∧ 𝑧 = 𝑏) → (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ↔ ∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑)) |
22 | | nfv 1516 |
. . . . . . 7
⊢
Ⅎ𝑦 𝑧 = 𝑏 |
23 | 8, 22 | nfan 1553 |
. . . . . 6
⊢
Ⅎ𝑦(∀𝑥∀𝑦Ⅎ𝑏𝜑 ∧ 𝑧 = 𝑏) |
24 | | eleq2 2230 |
. . . . . . . 8
⊢ (𝑧 = 𝑏 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑏)) |
25 | 24 | adantl 275 |
. . . . . . 7
⊢
((∀𝑥∀𝑦Ⅎ𝑏𝜑 ∧ 𝑧 = 𝑏) → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑏)) |
26 | 25 | imbi1d 230 |
. . . . . 6
⊢
((∀𝑥∀𝑦Ⅎ𝑏𝜑 ∧ 𝑧 = 𝑏) → ((𝑦 ∈ 𝑧 → ∃𝑥 ∈ 𝑎 𝜑) ↔ (𝑦 ∈ 𝑏 → ∃𝑥 ∈ 𝑎 𝜑))) |
27 | 23, 26 | ralbid2 2470 |
. . . . 5
⊢
((∀𝑥∀𝑦Ⅎ𝑏𝜑 ∧ 𝑧 = 𝑏) → (∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑 ↔ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
28 | 21, 27 | anbi12d 465 |
. . . 4
⊢
((∀𝑥∀𝑦Ⅎ𝑏𝜑 ∧ 𝑧 = 𝑏) → ((∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ∧ ∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑) ↔ (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑))) |
29 | 28 | ex 114 |
. . 3
⊢
(∀𝑥∀𝑦Ⅎ𝑏𝜑 → (𝑧 = 𝑏 → ((∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ∧ ∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑) ↔ (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)))) |
30 | 4, 16, 29 | cbvexd 1915 |
. 2
⊢
(∀𝑥∀𝑦Ⅎ𝑏𝜑 → (∃𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑧 𝜑 ∧ ∀𝑦 ∈ 𝑧 ∃𝑥 ∈ 𝑎 𝜑) ↔ ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑))) |
31 | 1, 30 | syl5ib 153 |
1
⊢
(∀𝑥∀𝑦Ⅎ𝑏𝜑 → (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑))) |