Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  strcollnft GIF version

Theorem strcollnft 13866
Description: Closed form of strcollnf 13867. (Contributed by BJ, 21-Oct-2019.)
Assertion
Ref Expression
strcollnft (∀𝑥𝑦𝑏𝜑 → (∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑)))
Distinct variable group:   𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem strcollnft
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 strcoll2 13865 . 2 (∀𝑥𝑎𝑦𝜑 → ∃𝑧(∀𝑥𝑎𝑦𝑧 𝜑 ∧ ∀𝑦𝑧𝑥𝑎 𝜑))
2 nfnf1 1532 . . . . 5 𝑏𝑏𝜑
32nfal 1564 . . . 4 𝑏𝑦𝑏𝜑
43nfal 1564 . . 3 𝑏𝑥𝑦𝑏𝜑
5 nfa1 1529 . . . . 5 𝑥𝑥𝑦𝑏𝜑
6 nfcvd 2309 . . . . 5 (∀𝑥𝑦𝑏𝜑𝑏𝑎)
7 nfa1 1529 . . . . . . 7 𝑦𝑦𝑏𝜑
87nfal 1564 . . . . . 6 𝑦𝑥𝑦𝑏𝜑
9 nfcvd 2309 . . . . . 6 (∀𝑥𝑦𝑏𝜑𝑏𝑧)
10 sp 1499 . . . . . . 7 (∀𝑦𝑏𝜑 → Ⅎ𝑏𝜑)
1110sps 1525 . . . . . 6 (∀𝑥𝑦𝑏𝜑 → Ⅎ𝑏𝜑)
128, 9, 11nfrexdxy 2500 . . . . 5 (∀𝑥𝑦𝑏𝜑 → Ⅎ𝑏𝑦𝑧 𝜑)
135, 6, 12nfraldxy 2499 . . . 4 (∀𝑥𝑦𝑏𝜑 → Ⅎ𝑏𝑥𝑎𝑦𝑧 𝜑)
145, 6, 11nfrexdxy 2500 . . . . 5 (∀𝑥𝑦𝑏𝜑 → Ⅎ𝑏𝑥𝑎 𝜑)
158, 9, 14nfraldxy 2499 . . . 4 (∀𝑥𝑦𝑏𝜑 → Ⅎ𝑏𝑦𝑧𝑥𝑎 𝜑)
1613, 15nfand 1556 . . 3 (∀𝑥𝑦𝑏𝜑 → Ⅎ𝑏(∀𝑥𝑎𝑦𝑧 𝜑 ∧ ∀𝑦𝑧𝑥𝑎 𝜑))
17 nfv 1516 . . . . . . 7 𝑥 𝑧 = 𝑏
185, 17nfan 1553 . . . . . 6 𝑥(∀𝑥𝑦𝑏𝜑𝑧 = 𝑏)
19 rexeq 2662 . . . . . . 7 (𝑧 = 𝑏 → (∃𝑦𝑧 𝜑 ↔ ∃𝑦𝑏 𝜑))
2019adantl 275 . . . . . 6 ((∀𝑥𝑦𝑏𝜑𝑧 = 𝑏) → (∃𝑦𝑧 𝜑 ↔ ∃𝑦𝑏 𝜑))
2118, 20ralbid 2464 . . . . 5 ((∀𝑥𝑦𝑏𝜑𝑧 = 𝑏) → (∀𝑥𝑎𝑦𝑧 𝜑 ↔ ∀𝑥𝑎𝑦𝑏 𝜑))
22 nfv 1516 . . . . . . 7 𝑦 𝑧 = 𝑏
238, 22nfan 1553 . . . . . 6 𝑦(∀𝑥𝑦𝑏𝜑𝑧 = 𝑏)
24 eleq2 2230 . . . . . . . 8 (𝑧 = 𝑏 → (𝑦𝑧𝑦𝑏))
2524adantl 275 . . . . . . 7 ((∀𝑥𝑦𝑏𝜑𝑧 = 𝑏) → (𝑦𝑧𝑦𝑏))
2625imbi1d 230 . . . . . 6 ((∀𝑥𝑦𝑏𝜑𝑧 = 𝑏) → ((𝑦𝑧 → ∃𝑥𝑎 𝜑) ↔ (𝑦𝑏 → ∃𝑥𝑎 𝜑)))
2723, 26ralbid2 2470 . . . . 5 ((∀𝑥𝑦𝑏𝜑𝑧 = 𝑏) → (∀𝑦𝑧𝑥𝑎 𝜑 ↔ ∀𝑦𝑏𝑥𝑎 𝜑))
2821, 27anbi12d 465 . . . 4 ((∀𝑥𝑦𝑏𝜑𝑧 = 𝑏) → ((∀𝑥𝑎𝑦𝑧 𝜑 ∧ ∀𝑦𝑧𝑥𝑎 𝜑) ↔ (∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑)))
2928ex 114 . . 3 (∀𝑥𝑦𝑏𝜑 → (𝑧 = 𝑏 → ((∀𝑥𝑎𝑦𝑧 𝜑 ∧ ∀𝑦𝑧𝑥𝑎 𝜑) ↔ (∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑))))
304, 16, 29cbvexd 1915 . 2 (∀𝑥𝑦𝑏𝜑 → (∃𝑧(∀𝑥𝑎𝑦𝑧 𝜑 ∧ ∀𝑦𝑧𝑥𝑎 𝜑) ↔ ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑)))
311, 30syl5ib 153 1 (∀𝑥𝑦𝑏𝜑 → (∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341  wnf 1448  wex 1480  wral 2444  wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-strcoll 13864
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450
This theorem is referenced by:  strcollnf  13867
  Copyright terms: Public domain W3C validator