ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexpri GIF version

Theorem ltexpri 7675
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
Assertion
Ref Expression
ltexpri (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexpri
Dummy variables 𝑦 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . . . 8 ((𝑦 = 𝑢𝑧 = 𝑣) → 𝑧 = 𝑣)
21eleq1d 2262 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → (𝑧 ∈ (2nd𝐴) ↔ 𝑣 ∈ (2nd𝐴)))
3 simpl 109 . . . . . . . . 9 ((𝑦 = 𝑢𝑧 = 𝑣) → 𝑦 = 𝑢)
41, 3oveq12d 5937 . . . . . . . 8 ((𝑦 = 𝑢𝑧 = 𝑣) → (𝑧 +Q 𝑦) = (𝑣 +Q 𝑢))
54eleq1d 2262 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 +Q 𝑦) ∈ (1st𝐵) ↔ (𝑣 +Q 𝑢) ∈ (1st𝐵)))
62, 5anbi12d 473 . . . . . 6 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵)) ↔ (𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))))
76cbvexdva 1941 . . . . 5 (𝑦 = 𝑢 → (∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵)) ↔ ∃𝑣(𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))))
87cbvrabv 2759 . . . 4 {𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))} = {𝑢Q ∣ ∃𝑣(𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))}
91eleq1d 2262 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → (𝑧 ∈ (1st𝐴) ↔ 𝑣 ∈ (1st𝐴)))
104eleq1d 2262 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 +Q 𝑦) ∈ (2nd𝐵) ↔ (𝑣 +Q 𝑢) ∈ (2nd𝐵)))
119, 10anbi12d 473 . . . . . 6 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵)) ↔ (𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))))
1211cbvexdva 1941 . . . . 5 (𝑦 = 𝑢 → (∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵)) ↔ ∃𝑣(𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))))
1312cbvrabv 2759 . . . 4 {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))} = {𝑢Q ∣ ∃𝑣(𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))}
148, 13opeq12i 3810 . . 3 ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ = ⟨{𝑢Q ∣ ∃𝑣(𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))}, {𝑢Q ∣ ∃𝑣(𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))}⟩
1514ltexprlempr 7670 . 2 (𝐴<P 𝐵 → ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ ∈ P)
1614ltexprlemfl 7671 . . . 4 (𝐴<P 𝐵 → (1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) ⊆ (1st𝐵))
1714ltexprlemrl 7672 . . . 4 (𝐴<P 𝐵 → (1st𝐵) ⊆ (1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)))
1816, 17eqssd 3197 . . 3 (𝐴<P 𝐵 → (1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (1st𝐵))
1914ltexprlemfu 7673 . . . 4 (𝐴<P 𝐵 → (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) ⊆ (2nd𝐵))
2014ltexprlemru 7674 . . . 4 (𝐴<P 𝐵 → (2nd𝐵) ⊆ (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)))
2119, 20eqssd 3197 . . 3 (𝐴<P 𝐵 → (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (2nd𝐵))
22 ltrelpr 7567 . . . . . . 7 <P ⊆ (P × P)
2322brel 4712 . . . . . 6 (𝐴<P 𝐵 → (𝐴P𝐵P))
2423simpld 112 . . . . 5 (𝐴<P 𝐵𝐴P)
25 addclpr 7599 . . . . 5 ((𝐴P ∧ ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ ∈ P) → (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) ∈ P)
2624, 15, 25syl2anc 411 . . . 4 (𝐴<P 𝐵 → (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) ∈ P)
2723simprd 114 . . . 4 (𝐴<P 𝐵𝐵P)
28 preqlu 7534 . . . 4 (((𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) ∈ P𝐵P) → ((𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵 ↔ ((1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (1st𝐵) ∧ (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (2nd𝐵))))
2926, 27, 28syl2anc 411 . . 3 (𝐴<P 𝐵 → ((𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵 ↔ ((1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (1st𝐵) ∧ (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (2nd𝐵))))
3018, 21, 29mpbir2and 946 . 2 (𝐴<P 𝐵 → (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵)
31 oveq2 5927 . . . 4 (𝑥 = ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ → (𝐴 +P 𝑥) = (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩))
3231eqeq1d 2202 . . 3 (𝑥 = ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵))
3332rspcev 2865 . 2 ((⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ ∈ P ∧ (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵) → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
3415, 30, 33syl2anc 411 1 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  wrex 2473  {crab 2476  cop 3622   class class class wbr 4030  cfv 5255  (class class class)co 5919  1st c1st 6193  2nd c2nd 6194  Qcnq 7342   +Q cplq 7344  Pcnp 7353   +P cpp 7355  <P cltp 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-iplp 7530  df-iltp 7532
This theorem is referenced by:  lteupri  7679  ltaprlem  7680  ltaprg  7681  ltmprr  7704  recexgt0sr  7835  mulgt0sr  7840  map2psrprg  7867
  Copyright terms: Public domain W3C validator