ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexpri GIF version

Theorem ltexpri 7788
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
Assertion
Ref Expression
ltexpri (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexpri
Dummy variables 𝑦 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . . . 8 ((𝑦 = 𝑢𝑧 = 𝑣) → 𝑧 = 𝑣)
21eleq1d 2298 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → (𝑧 ∈ (2nd𝐴) ↔ 𝑣 ∈ (2nd𝐴)))
3 simpl 109 . . . . . . . . 9 ((𝑦 = 𝑢𝑧 = 𝑣) → 𝑦 = 𝑢)
41, 3oveq12d 6012 . . . . . . . 8 ((𝑦 = 𝑢𝑧 = 𝑣) → (𝑧 +Q 𝑦) = (𝑣 +Q 𝑢))
54eleq1d 2298 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 +Q 𝑦) ∈ (1st𝐵) ↔ (𝑣 +Q 𝑢) ∈ (1st𝐵)))
62, 5anbi12d 473 . . . . . 6 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵)) ↔ (𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))))
76cbvexdva 1976 . . . . 5 (𝑦 = 𝑢 → (∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵)) ↔ ∃𝑣(𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))))
87cbvrabv 2798 . . . 4 {𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))} = {𝑢Q ∣ ∃𝑣(𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))}
91eleq1d 2298 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → (𝑧 ∈ (1st𝐴) ↔ 𝑣 ∈ (1st𝐴)))
104eleq1d 2298 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 +Q 𝑦) ∈ (2nd𝐵) ↔ (𝑣 +Q 𝑢) ∈ (2nd𝐵)))
119, 10anbi12d 473 . . . . . 6 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵)) ↔ (𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))))
1211cbvexdva 1976 . . . . 5 (𝑦 = 𝑢 → (∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵)) ↔ ∃𝑣(𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))))
1312cbvrabv 2798 . . . 4 {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))} = {𝑢Q ∣ ∃𝑣(𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))}
148, 13opeq12i 3861 . . 3 ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ = ⟨{𝑢Q ∣ ∃𝑣(𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))}, {𝑢Q ∣ ∃𝑣(𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))}⟩
1514ltexprlempr 7783 . 2 (𝐴<P 𝐵 → ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ ∈ P)
1614ltexprlemfl 7784 . . . 4 (𝐴<P 𝐵 → (1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) ⊆ (1st𝐵))
1714ltexprlemrl 7785 . . . 4 (𝐴<P 𝐵 → (1st𝐵) ⊆ (1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)))
1816, 17eqssd 3241 . . 3 (𝐴<P 𝐵 → (1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (1st𝐵))
1914ltexprlemfu 7786 . . . 4 (𝐴<P 𝐵 → (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) ⊆ (2nd𝐵))
2014ltexprlemru 7787 . . . 4 (𝐴<P 𝐵 → (2nd𝐵) ⊆ (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)))
2119, 20eqssd 3241 . . 3 (𝐴<P 𝐵 → (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (2nd𝐵))
22 ltrelpr 7680 . . . . . . 7 <P ⊆ (P × P)
2322brel 4768 . . . . . 6 (𝐴<P 𝐵 → (𝐴P𝐵P))
2423simpld 112 . . . . 5 (𝐴<P 𝐵𝐴P)
25 addclpr 7712 . . . . 5 ((𝐴P ∧ ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ ∈ P) → (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) ∈ P)
2624, 15, 25syl2anc 411 . . . 4 (𝐴<P 𝐵 → (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) ∈ P)
2723simprd 114 . . . 4 (𝐴<P 𝐵𝐵P)
28 preqlu 7647 . . . 4 (((𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) ∈ P𝐵P) → ((𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵 ↔ ((1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (1st𝐵) ∧ (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (2nd𝐵))))
2926, 27, 28syl2anc 411 . . 3 (𝐴<P 𝐵 → ((𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵 ↔ ((1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (1st𝐵) ∧ (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (2nd𝐵))))
3018, 21, 29mpbir2and 950 . 2 (𝐴<P 𝐵 → (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵)
31 oveq2 6002 . . . 4 (𝑥 = ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ → (𝐴 +P 𝑥) = (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩))
3231eqeq1d 2238 . . 3 (𝑥 = ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵))
3332rspcev 2907 . 2 ((⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ ∈ P ∧ (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵) → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
3415, 30, 33syl2anc 411 1 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  wrex 2509  {crab 2512  cop 3669   class class class wbr 4082  cfv 5314  (class class class)co 5994  1st c1st 6274  2nd c2nd 6275  Qcnq 7455   +Q cplq 7457  Pcnp 7466   +P cpp 7468  <P cltp 7470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-1o 6552  df-2o 6553  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-pli 7480  df-mi 7481  df-lti 7482  df-plpq 7519  df-mpq 7520  df-enq 7522  df-nqqs 7523  df-plqqs 7524  df-mqqs 7525  df-1nqqs 7526  df-rq 7527  df-ltnqqs 7528  df-enq0 7599  df-nq0 7600  df-0nq0 7601  df-plq0 7602  df-mq0 7603  df-inp 7641  df-iplp 7643  df-iltp 7645
This theorem is referenced by:  lteupri  7792  ltaprlem  7793  ltaprg  7794  ltmprr  7817  recexgt0sr  7948  mulgt0sr  7953  map2psrprg  7980
  Copyright terms: Public domain W3C validator