ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexpri GIF version

Theorem ltexpri 7445
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
Assertion
Ref Expression
ltexpri (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexpri
Dummy variables 𝑦 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . . . . 8 ((𝑦 = 𝑢𝑧 = 𝑣) → 𝑧 = 𝑣)
21eleq1d 2209 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → (𝑧 ∈ (2nd𝐴) ↔ 𝑣 ∈ (2nd𝐴)))
3 simpl 108 . . . . . . . . 9 ((𝑦 = 𝑢𝑧 = 𝑣) → 𝑦 = 𝑢)
41, 3oveq12d 5800 . . . . . . . 8 ((𝑦 = 𝑢𝑧 = 𝑣) → (𝑧 +Q 𝑦) = (𝑣 +Q 𝑢))
54eleq1d 2209 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 +Q 𝑦) ∈ (1st𝐵) ↔ (𝑣 +Q 𝑢) ∈ (1st𝐵)))
62, 5anbi12d 465 . . . . . 6 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵)) ↔ (𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))))
76cbvexdva 1902 . . . . 5 (𝑦 = 𝑢 → (∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵)) ↔ ∃𝑣(𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))))
87cbvrabv 2688 . . . 4 {𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))} = {𝑢Q ∣ ∃𝑣(𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))}
91eleq1d 2209 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → (𝑧 ∈ (1st𝐴) ↔ 𝑣 ∈ (1st𝐴)))
104eleq1d 2209 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 +Q 𝑦) ∈ (2nd𝐵) ↔ (𝑣 +Q 𝑢) ∈ (2nd𝐵)))
119, 10anbi12d 465 . . . . . 6 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵)) ↔ (𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))))
1211cbvexdva 1902 . . . . 5 (𝑦 = 𝑢 → (∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵)) ↔ ∃𝑣(𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))))
1312cbvrabv 2688 . . . 4 {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))} = {𝑢Q ∣ ∃𝑣(𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))}
148, 13opeq12i 3718 . . 3 ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ = ⟨{𝑢Q ∣ ∃𝑣(𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))}, {𝑢Q ∣ ∃𝑣(𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))}⟩
1514ltexprlempr 7440 . 2 (𝐴<P 𝐵 → ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ ∈ P)
1614ltexprlemfl 7441 . . . 4 (𝐴<P 𝐵 → (1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) ⊆ (1st𝐵))
1714ltexprlemrl 7442 . . . 4 (𝐴<P 𝐵 → (1st𝐵) ⊆ (1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)))
1816, 17eqssd 3119 . . 3 (𝐴<P 𝐵 → (1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (1st𝐵))
1914ltexprlemfu 7443 . . . 4 (𝐴<P 𝐵 → (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) ⊆ (2nd𝐵))
2014ltexprlemru 7444 . . . 4 (𝐴<P 𝐵 → (2nd𝐵) ⊆ (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)))
2119, 20eqssd 3119 . . 3 (𝐴<P 𝐵 → (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (2nd𝐵))
22 ltrelpr 7337 . . . . . . 7 <P ⊆ (P × P)
2322brel 4599 . . . . . 6 (𝐴<P 𝐵 → (𝐴P𝐵P))
2423simpld 111 . . . . 5 (𝐴<P 𝐵𝐴P)
25 addclpr 7369 . . . . 5 ((𝐴P ∧ ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ ∈ P) → (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) ∈ P)
2624, 15, 25syl2anc 409 . . . 4 (𝐴<P 𝐵 → (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) ∈ P)
2723simprd 113 . . . 4 (𝐴<P 𝐵𝐵P)
28 preqlu 7304 . . . 4 (((𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) ∈ P𝐵P) → ((𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵 ↔ ((1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (1st𝐵) ∧ (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (2nd𝐵))))
2926, 27, 28syl2anc 409 . . 3 (𝐴<P 𝐵 → ((𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵 ↔ ((1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (1st𝐵) ∧ (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (2nd𝐵))))
3018, 21, 29mpbir2and 929 . 2 (𝐴<P 𝐵 → (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵)
31 oveq2 5790 . . . 4 (𝑥 = ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ → (𝐴 +P 𝑥) = (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩))
3231eqeq1d 2149 . . 3 (𝑥 = ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵))
3332rspcev 2793 . 2 ((⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ ∈ P ∧ (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵) → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
3415, 30, 33syl2anc 409 1 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wex 1469  wcel 1481  wrex 2418  {crab 2421  cop 3535   class class class wbr 3937  cfv 5131  (class class class)co 5782  1st c1st 6044  2nd c2nd 6045  Qcnq 7112   +Q cplq 7114  Pcnp 7123   +P cpp 7125  <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-iltp 7302
This theorem is referenced by:  lteupri  7449  ltaprlem  7450  ltaprg  7451  ltmprr  7474  recexgt0sr  7605  mulgt0sr  7610  map2psrprg  7637
  Copyright terms: Public domain W3C validator