ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexpri GIF version

Theorem ltexpri 7603
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
Assertion
Ref Expression
ltexpri (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexpri
Dummy variables 𝑦 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . . . 8 ((𝑦 = 𝑢𝑧 = 𝑣) → 𝑧 = 𝑣)
21eleq1d 2246 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → (𝑧 ∈ (2nd𝐴) ↔ 𝑣 ∈ (2nd𝐴)))
3 simpl 109 . . . . . . . . 9 ((𝑦 = 𝑢𝑧 = 𝑣) → 𝑦 = 𝑢)
41, 3oveq12d 5887 . . . . . . . 8 ((𝑦 = 𝑢𝑧 = 𝑣) → (𝑧 +Q 𝑦) = (𝑣 +Q 𝑢))
54eleq1d 2246 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 +Q 𝑦) ∈ (1st𝐵) ↔ (𝑣 +Q 𝑢) ∈ (1st𝐵)))
62, 5anbi12d 473 . . . . . 6 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵)) ↔ (𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))))
76cbvexdva 1929 . . . . 5 (𝑦 = 𝑢 → (∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵)) ↔ ∃𝑣(𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))))
87cbvrabv 2736 . . . 4 {𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))} = {𝑢Q ∣ ∃𝑣(𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))}
91eleq1d 2246 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → (𝑧 ∈ (1st𝐴) ↔ 𝑣 ∈ (1st𝐴)))
104eleq1d 2246 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 +Q 𝑦) ∈ (2nd𝐵) ↔ (𝑣 +Q 𝑢) ∈ (2nd𝐵)))
119, 10anbi12d 473 . . . . . 6 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵)) ↔ (𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))))
1211cbvexdva 1929 . . . . 5 (𝑦 = 𝑢 → (∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵)) ↔ ∃𝑣(𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))))
1312cbvrabv 2736 . . . 4 {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))} = {𝑢Q ∣ ∃𝑣(𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))}
148, 13opeq12i 3781 . . 3 ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ = ⟨{𝑢Q ∣ ∃𝑣(𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))}, {𝑢Q ∣ ∃𝑣(𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))}⟩
1514ltexprlempr 7598 . 2 (𝐴<P 𝐵 → ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ ∈ P)
1614ltexprlemfl 7599 . . . 4 (𝐴<P 𝐵 → (1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) ⊆ (1st𝐵))
1714ltexprlemrl 7600 . . . 4 (𝐴<P 𝐵 → (1st𝐵) ⊆ (1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)))
1816, 17eqssd 3172 . . 3 (𝐴<P 𝐵 → (1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (1st𝐵))
1914ltexprlemfu 7601 . . . 4 (𝐴<P 𝐵 → (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) ⊆ (2nd𝐵))
2014ltexprlemru 7602 . . . 4 (𝐴<P 𝐵 → (2nd𝐵) ⊆ (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)))
2119, 20eqssd 3172 . . 3 (𝐴<P 𝐵 → (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (2nd𝐵))
22 ltrelpr 7495 . . . . . . 7 <P ⊆ (P × P)
2322brel 4675 . . . . . 6 (𝐴<P 𝐵 → (𝐴P𝐵P))
2423simpld 112 . . . . 5 (𝐴<P 𝐵𝐴P)
25 addclpr 7527 . . . . 5 ((𝐴P ∧ ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ ∈ P) → (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) ∈ P)
2624, 15, 25syl2anc 411 . . . 4 (𝐴<P 𝐵 → (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) ∈ P)
2723simprd 114 . . . 4 (𝐴<P 𝐵𝐵P)
28 preqlu 7462 . . . 4 (((𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) ∈ P𝐵P) → ((𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵 ↔ ((1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (1st𝐵) ∧ (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (2nd𝐵))))
2926, 27, 28syl2anc 411 . . 3 (𝐴<P 𝐵 → ((𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵 ↔ ((1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (1st𝐵) ∧ (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (2nd𝐵))))
3018, 21, 29mpbir2and 944 . 2 (𝐴<P 𝐵 → (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵)
31 oveq2 5877 . . . 4 (𝑥 = ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ → (𝐴 +P 𝑥) = (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩))
3231eqeq1d 2186 . . 3 (𝑥 = ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵))
3332rspcev 2841 . 2 ((⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ ∈ P ∧ (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵) → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
3415, 30, 33syl2anc 411 1 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  wrex 2456  {crab 2459  cop 3594   class class class wbr 4000  cfv 5212  (class class class)co 5869  1st c1st 6133  2nd c2nd 6134  Qcnq 7270   +Q cplq 7272  Pcnp 7281   +P cpp 7283  <P cltp 7285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-2o 6412  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-lti 7297  df-plpq 7334  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-mqqs 7340  df-1nqqs 7341  df-rq 7342  df-ltnqqs 7343  df-enq0 7414  df-nq0 7415  df-0nq0 7416  df-plq0 7417  df-mq0 7418  df-inp 7456  df-iplp 7458  df-iltp 7460
This theorem is referenced by:  lteupri  7607  ltaprlem  7608  ltaprg  7609  ltmprr  7632  recexgt0sr  7763  mulgt0sr  7768  map2psrprg  7795
  Copyright terms: Public domain W3C validator