| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recexpr | GIF version | ||
| Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) |
| Ref | Expression |
|---|---|
| recexpr | ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq12 4064 | . . . . . . 7 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → (𝑧 <Q 𝑤 ↔ 𝑢 <Q 𝑣)) | |
| 2 | simpr 110 | . . . . . . . . 9 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → 𝑤 = 𝑣) | |
| 3 | 2 | fveq2d 5603 | . . . . . . . 8 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → (*Q‘𝑤) = (*Q‘𝑣)) |
| 4 | 3 | eleq1d 2276 | . . . . . . 7 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → ((*Q‘𝑤) ∈ (2nd ‘𝐴) ↔ (*Q‘𝑣) ∈ (2nd ‘𝐴))) |
| 5 | 1, 4 | anbi12d 473 | . . . . . 6 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → ((𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴)) ↔ (𝑢 <Q 𝑣 ∧ (*Q‘𝑣) ∈ (2nd ‘𝐴)))) |
| 6 | 5 | cbvexdva 1954 | . . . . 5 ⊢ (𝑧 = 𝑢 → (∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴)) ↔ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q‘𝑣) ∈ (2nd ‘𝐴)))) |
| 7 | 6 | cbvabv 2332 | . . . 4 ⊢ {𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))} = {𝑢 ∣ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q‘𝑣) ∈ (2nd ‘𝐴))} |
| 8 | simpl 109 | . . . . . . . 8 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → 𝑧 = 𝑢) | |
| 9 | 2, 8 | breq12d 4072 | . . . . . . 7 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → (𝑤 <Q 𝑧 ↔ 𝑣 <Q 𝑢)) |
| 10 | 3 | eleq1d 2276 | . . . . . . 7 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → ((*Q‘𝑤) ∈ (1st ‘𝐴) ↔ (*Q‘𝑣) ∈ (1st ‘𝐴))) |
| 11 | 9, 10 | anbi12d 473 | . . . . . 6 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → ((𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴)) ↔ (𝑣 <Q 𝑢 ∧ (*Q‘𝑣) ∈ (1st ‘𝐴)))) |
| 12 | 11 | cbvexdva 1954 | . . . . 5 ⊢ (𝑧 = 𝑢 → (∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴)) ↔ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q‘𝑣) ∈ (1st ‘𝐴)))) |
| 13 | 12 | cbvabv 2332 | . . . 4 ⊢ {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))} = {𝑢 ∣ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q‘𝑣) ∈ (1st ‘𝐴))} |
| 14 | 7, 13 | opeq12i 3838 | . . 3 ⊢ 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 = 〈{𝑢 ∣ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q‘𝑣) ∈ (2nd ‘𝐴))}, {𝑢 ∣ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q‘𝑣) ∈ (1st ‘𝐴))}〉 |
| 15 | 14 | recexprlempr 7780 | . 2 ⊢ (𝐴 ∈ P → 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 ∈ P) |
| 16 | 14 | recexprlemex 7785 | . 2 ⊢ (𝐴 ∈ P → (𝐴 ·P 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉) = 1P) |
| 17 | oveq2 5975 | . . . 4 ⊢ (𝑥 = 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 → (𝐴 ·P 𝑥) = (𝐴 ·P 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉)) | |
| 18 | 17 | eqeq1d 2216 | . . 3 ⊢ (𝑥 = 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 → ((𝐴 ·P 𝑥) = 1P ↔ (𝐴 ·P 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉) = 1P)) |
| 19 | 18 | rspcev 2884 | . 2 ⊢ ((〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 ∈ P ∧ (𝐴 ·P 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉) = 1P) → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
| 20 | 15, 16, 19 | syl2anc 411 | 1 ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2178 {cab 2193 ∃wrex 2487 〈cop 3646 class class class wbr 4059 ‘cfv 5290 (class class class)co 5967 1st c1st 6247 2nd c2nd 6248 *Qcrq 7432 <Q cltq 7433 Pcnp 7439 1Pc1p 7440 ·P cmp 7442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-2o 6526 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-enq0 7572 df-nq0 7573 df-0nq0 7574 df-plq0 7575 df-mq0 7576 df-inp 7614 df-i1p 7615 df-imp 7617 |
| This theorem is referenced by: ltmprr 7790 recexgt0sr 7921 |
| Copyright terms: Public domain | W3C validator |