ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexpr GIF version

Theorem recexpr 7786
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
Assertion
Ref Expression
recexpr (𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexpr
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 4064 . . . . . . 7 ((𝑧 = 𝑢𝑤 = 𝑣) → (𝑧 <Q 𝑤𝑢 <Q 𝑣))
2 simpr 110 . . . . . . . . 9 ((𝑧 = 𝑢𝑤 = 𝑣) → 𝑤 = 𝑣)
32fveq2d 5603 . . . . . . . 8 ((𝑧 = 𝑢𝑤 = 𝑣) → (*Q𝑤) = (*Q𝑣))
43eleq1d 2276 . . . . . . 7 ((𝑧 = 𝑢𝑤 = 𝑣) → ((*Q𝑤) ∈ (2nd𝐴) ↔ (*Q𝑣) ∈ (2nd𝐴)))
51, 4anbi12d 473 . . . . . 6 ((𝑧 = 𝑢𝑤 = 𝑣) → ((𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴)) ↔ (𝑢 <Q 𝑣 ∧ (*Q𝑣) ∈ (2nd𝐴))))
65cbvexdva 1954 . . . . 5 (𝑧 = 𝑢 → (∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴)) ↔ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q𝑣) ∈ (2nd𝐴))))
76cbvabv 2332 . . . 4 {𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))} = {𝑢 ∣ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q𝑣) ∈ (2nd𝐴))}
8 simpl 109 . . . . . . . 8 ((𝑧 = 𝑢𝑤 = 𝑣) → 𝑧 = 𝑢)
92, 8breq12d 4072 . . . . . . 7 ((𝑧 = 𝑢𝑤 = 𝑣) → (𝑤 <Q 𝑧𝑣 <Q 𝑢))
103eleq1d 2276 . . . . . . 7 ((𝑧 = 𝑢𝑤 = 𝑣) → ((*Q𝑤) ∈ (1st𝐴) ↔ (*Q𝑣) ∈ (1st𝐴)))
119, 10anbi12d 473 . . . . . 6 ((𝑧 = 𝑢𝑤 = 𝑣) → ((𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴)) ↔ (𝑣 <Q 𝑢 ∧ (*Q𝑣) ∈ (1st𝐴))))
1211cbvexdva 1954 . . . . 5 (𝑧 = 𝑢 → (∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴)) ↔ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q𝑣) ∈ (1st𝐴))))
1312cbvabv 2332 . . . 4 {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))} = {𝑢 ∣ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q𝑣) ∈ (1st𝐴))}
147, 13opeq12i 3838 . . 3 ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ = ⟨{𝑢 ∣ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q𝑣) ∈ (2nd𝐴))}, {𝑢 ∣ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q𝑣) ∈ (1st𝐴))}⟩
1514recexprlempr 7780 . 2 (𝐴P → ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ ∈ P)
1614recexprlemex 7785 . 2 (𝐴P → (𝐴 ·P ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩) = 1P)
17 oveq2 5975 . . . 4 (𝑥 = ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ → (𝐴 ·P 𝑥) = (𝐴 ·P ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩))
1817eqeq1d 2216 . . 3 (𝑥 = ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ → ((𝐴 ·P 𝑥) = 1P ↔ (𝐴 ·P ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩) = 1P))
1918rspcev 2884 . 2 ((⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ ∈ P ∧ (𝐴 ·P ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩) = 1P) → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
2015, 16, 19syl2anc 411 1 (𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wex 1516  wcel 2178  {cab 2193  wrex 2487  cop 3646   class class class wbr 4059  cfv 5290  (class class class)co 5967  1st c1st 6247  2nd c2nd 6248  *Qcrq 7432   <Q cltq 7433  Pcnp 7439  1Pc1p 7440   ·P cmp 7442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-i1p 7615  df-imp 7617
This theorem is referenced by:  ltmprr  7790  recexgt0sr  7921
  Copyright terms: Public domain W3C validator