ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexpr GIF version

Theorem recexpr 7570
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
Assertion
Ref Expression
recexpr (𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexpr
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 3981 . . . . . . 7 ((𝑧 = 𝑢𝑤 = 𝑣) → (𝑧 <Q 𝑤𝑢 <Q 𝑣))
2 simpr 109 . . . . . . . . 9 ((𝑧 = 𝑢𝑤 = 𝑣) → 𝑤 = 𝑣)
32fveq2d 5484 . . . . . . . 8 ((𝑧 = 𝑢𝑤 = 𝑣) → (*Q𝑤) = (*Q𝑣))
43eleq1d 2233 . . . . . . 7 ((𝑧 = 𝑢𝑤 = 𝑣) → ((*Q𝑤) ∈ (2nd𝐴) ↔ (*Q𝑣) ∈ (2nd𝐴)))
51, 4anbi12d 465 . . . . . 6 ((𝑧 = 𝑢𝑤 = 𝑣) → ((𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴)) ↔ (𝑢 <Q 𝑣 ∧ (*Q𝑣) ∈ (2nd𝐴))))
65cbvexdva 1916 . . . . 5 (𝑧 = 𝑢 → (∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴)) ↔ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q𝑣) ∈ (2nd𝐴))))
76cbvabv 2289 . . . 4 {𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))} = {𝑢 ∣ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q𝑣) ∈ (2nd𝐴))}
8 simpl 108 . . . . . . . 8 ((𝑧 = 𝑢𝑤 = 𝑣) → 𝑧 = 𝑢)
92, 8breq12d 3989 . . . . . . 7 ((𝑧 = 𝑢𝑤 = 𝑣) → (𝑤 <Q 𝑧𝑣 <Q 𝑢))
103eleq1d 2233 . . . . . . 7 ((𝑧 = 𝑢𝑤 = 𝑣) → ((*Q𝑤) ∈ (1st𝐴) ↔ (*Q𝑣) ∈ (1st𝐴)))
119, 10anbi12d 465 . . . . . 6 ((𝑧 = 𝑢𝑤 = 𝑣) → ((𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴)) ↔ (𝑣 <Q 𝑢 ∧ (*Q𝑣) ∈ (1st𝐴))))
1211cbvexdva 1916 . . . . 5 (𝑧 = 𝑢 → (∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴)) ↔ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q𝑣) ∈ (1st𝐴))))
1312cbvabv 2289 . . . 4 {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))} = {𝑢 ∣ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q𝑣) ∈ (1st𝐴))}
147, 13opeq12i 3757 . . 3 ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ = ⟨{𝑢 ∣ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q𝑣) ∈ (2nd𝐴))}, {𝑢 ∣ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q𝑣) ∈ (1st𝐴))}⟩
1514recexprlempr 7564 . 2 (𝐴P → ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ ∈ P)
1614recexprlemex 7569 . 2 (𝐴P → (𝐴 ·P ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩) = 1P)
17 oveq2 5844 . . . 4 (𝑥 = ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ → (𝐴 ·P 𝑥) = (𝐴 ·P ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩))
1817eqeq1d 2173 . . 3 (𝑥 = ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ → ((𝐴 ·P 𝑥) = 1P ↔ (𝐴 ·P ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩) = 1P))
1918rspcev 2825 . 2 ((⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ ∈ P ∧ (𝐴 ·P ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩) = 1P) → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
2015, 16, 19syl2anc 409 1 (𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1342  wex 1479  wcel 2135  {cab 2150  wrex 2443  cop 3573   class class class wbr 3976  cfv 5182  (class class class)co 5836  1st c1st 6098  2nd c2nd 6099  *Qcrq 7216   <Q cltq 7217  Pcnp 7223  1Pc1p 7224   ·P cmp 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-eprel 4261  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-1o 6375  df-2o 6376  df-oadd 6379  df-omul 6380  df-er 6492  df-ec 6494  df-qs 6498  df-ni 7236  df-pli 7237  df-mi 7238  df-lti 7239  df-plpq 7276  df-mpq 7277  df-enq 7279  df-nqqs 7280  df-plqqs 7281  df-mqqs 7282  df-1nqqs 7283  df-rq 7284  df-ltnqqs 7285  df-enq0 7356  df-nq0 7357  df-0nq0 7358  df-plq0 7359  df-mq0 7360  df-inp 7398  df-i1p 7399  df-imp 7401
This theorem is referenced by:  ltmprr  7574  recexgt0sr  7705
  Copyright terms: Public domain W3C validator