ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexpr GIF version

Theorem recexpr 7347
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
Assertion
Ref Expression
recexpr (𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexpr
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 3880 . . . . . . 7 ((𝑧 = 𝑢𝑤 = 𝑣) → (𝑧 <Q 𝑤𝑢 <Q 𝑣))
2 simpr 109 . . . . . . . . 9 ((𝑧 = 𝑢𝑤 = 𝑣) → 𝑤 = 𝑣)
32fveq2d 5357 . . . . . . . 8 ((𝑧 = 𝑢𝑤 = 𝑣) → (*Q𝑤) = (*Q𝑣))
43eleq1d 2168 . . . . . . 7 ((𝑧 = 𝑢𝑤 = 𝑣) → ((*Q𝑤) ∈ (2nd𝐴) ↔ (*Q𝑣) ∈ (2nd𝐴)))
51, 4anbi12d 460 . . . . . 6 ((𝑧 = 𝑢𝑤 = 𝑣) → ((𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴)) ↔ (𝑢 <Q 𝑣 ∧ (*Q𝑣) ∈ (2nd𝐴))))
65cbvexdva 1864 . . . . 5 (𝑧 = 𝑢 → (∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴)) ↔ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q𝑣) ∈ (2nd𝐴))))
76cbvabv 2223 . . . 4 {𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))} = {𝑢 ∣ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q𝑣) ∈ (2nd𝐴))}
8 simpl 108 . . . . . . . 8 ((𝑧 = 𝑢𝑤 = 𝑣) → 𝑧 = 𝑢)
92, 8breq12d 3888 . . . . . . 7 ((𝑧 = 𝑢𝑤 = 𝑣) → (𝑤 <Q 𝑧𝑣 <Q 𝑢))
103eleq1d 2168 . . . . . . 7 ((𝑧 = 𝑢𝑤 = 𝑣) → ((*Q𝑤) ∈ (1st𝐴) ↔ (*Q𝑣) ∈ (1st𝐴)))
119, 10anbi12d 460 . . . . . 6 ((𝑧 = 𝑢𝑤 = 𝑣) → ((𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴)) ↔ (𝑣 <Q 𝑢 ∧ (*Q𝑣) ∈ (1st𝐴))))
1211cbvexdva 1864 . . . . 5 (𝑧 = 𝑢 → (∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴)) ↔ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q𝑣) ∈ (1st𝐴))))
1312cbvabv 2223 . . . 4 {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))} = {𝑢 ∣ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q𝑣) ∈ (1st𝐴))}
147, 13opeq12i 3657 . . 3 ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ = ⟨{𝑢 ∣ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q𝑣) ∈ (2nd𝐴))}, {𝑢 ∣ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q𝑣) ∈ (1st𝐴))}⟩
1514recexprlempr 7341 . 2 (𝐴P → ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ ∈ P)
1614recexprlemex 7346 . 2 (𝐴P → (𝐴 ·P ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩) = 1P)
17 oveq2 5714 . . . 4 (𝑥 = ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ → (𝐴 ·P 𝑥) = (𝐴 ·P ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩))
1817eqeq1d 2108 . . 3 (𝑥 = ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ → ((𝐴 ·P 𝑥) = 1P ↔ (𝐴 ·P ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩) = 1P))
1918rspcev 2744 . 2 ((⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ ∈ P ∧ (𝐴 ·P ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩) = 1P) → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
2015, 16, 19syl2anc 406 1 (𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wex 1436  wcel 1448  {cab 2086  wrex 2376  cop 3477   class class class wbr 3875  cfv 5059  (class class class)co 5706  1st c1st 5967  2nd c2nd 5968  *Qcrq 6993   <Q cltq 6994  Pcnp 7000  1Pc1p 7001   ·P cmp 7003
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-2o 6244  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-mqqs 7059  df-1nqqs 7060  df-rq 7061  df-ltnqqs 7062  df-enq0 7133  df-nq0 7134  df-0nq0 7135  df-plq0 7136  df-mq0 7137  df-inp 7175  df-i1p 7176  df-imp 7178
This theorem is referenced by:  ltmprr  7351  recexgt0sr  7469
  Copyright terms: Public domain W3C validator