Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recexpr | GIF version |
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) |
Ref | Expression |
---|---|
recexpr | ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq12 3994 | . . . . . . 7 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → (𝑧 <Q 𝑤 ↔ 𝑢 <Q 𝑣)) | |
2 | simpr 109 | . . . . . . . . 9 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → 𝑤 = 𝑣) | |
3 | 2 | fveq2d 5500 | . . . . . . . 8 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → (*Q‘𝑤) = (*Q‘𝑣)) |
4 | 3 | eleq1d 2239 | . . . . . . 7 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → ((*Q‘𝑤) ∈ (2nd ‘𝐴) ↔ (*Q‘𝑣) ∈ (2nd ‘𝐴))) |
5 | 1, 4 | anbi12d 470 | . . . . . 6 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → ((𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴)) ↔ (𝑢 <Q 𝑣 ∧ (*Q‘𝑣) ∈ (2nd ‘𝐴)))) |
6 | 5 | cbvexdva 1922 | . . . . 5 ⊢ (𝑧 = 𝑢 → (∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴)) ↔ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q‘𝑣) ∈ (2nd ‘𝐴)))) |
7 | 6 | cbvabv 2295 | . . . 4 ⊢ {𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))} = {𝑢 ∣ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q‘𝑣) ∈ (2nd ‘𝐴))} |
8 | simpl 108 | . . . . . . . 8 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → 𝑧 = 𝑢) | |
9 | 2, 8 | breq12d 4002 | . . . . . . 7 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → (𝑤 <Q 𝑧 ↔ 𝑣 <Q 𝑢)) |
10 | 3 | eleq1d 2239 | . . . . . . 7 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → ((*Q‘𝑤) ∈ (1st ‘𝐴) ↔ (*Q‘𝑣) ∈ (1st ‘𝐴))) |
11 | 9, 10 | anbi12d 470 | . . . . . 6 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → ((𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴)) ↔ (𝑣 <Q 𝑢 ∧ (*Q‘𝑣) ∈ (1st ‘𝐴)))) |
12 | 11 | cbvexdva 1922 | . . . . 5 ⊢ (𝑧 = 𝑢 → (∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴)) ↔ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q‘𝑣) ∈ (1st ‘𝐴)))) |
13 | 12 | cbvabv 2295 | . . . 4 ⊢ {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))} = {𝑢 ∣ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q‘𝑣) ∈ (1st ‘𝐴))} |
14 | 7, 13 | opeq12i 3770 | . . 3 ⊢ 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 = 〈{𝑢 ∣ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q‘𝑣) ∈ (2nd ‘𝐴))}, {𝑢 ∣ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q‘𝑣) ∈ (1st ‘𝐴))}〉 |
15 | 14 | recexprlempr 7594 | . 2 ⊢ (𝐴 ∈ P → 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 ∈ P) |
16 | 14 | recexprlemex 7599 | . 2 ⊢ (𝐴 ∈ P → (𝐴 ·P 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉) = 1P) |
17 | oveq2 5861 | . . . 4 ⊢ (𝑥 = 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 → (𝐴 ·P 𝑥) = (𝐴 ·P 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉)) | |
18 | 17 | eqeq1d 2179 | . . 3 ⊢ (𝑥 = 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 → ((𝐴 ·P 𝑥) = 1P ↔ (𝐴 ·P 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉) = 1P)) |
19 | 18 | rspcev 2834 | . 2 ⊢ ((〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 ∈ P ∧ (𝐴 ·P 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉) = 1P) → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
20 | 15, 16, 19 | syl2anc 409 | 1 ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∃wex 1485 ∈ wcel 2141 {cab 2156 ∃wrex 2449 〈cop 3586 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 1st c1st 6117 2nd c2nd 6118 *Qcrq 7246 <Q cltq 7247 Pcnp 7253 1Pc1p 7254 ·P cmp 7256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-i1p 7429 df-imp 7431 |
This theorem is referenced by: ltmprr 7604 recexgt0sr 7735 |
Copyright terms: Public domain | W3C validator |