| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recexpr | GIF version | ||
| Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) |
| Ref | Expression |
|---|---|
| recexpr | ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq12 4038 | . . . . . . 7 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → (𝑧 <Q 𝑤 ↔ 𝑢 <Q 𝑣)) | |
| 2 | simpr 110 | . . . . . . . . 9 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → 𝑤 = 𝑣) | |
| 3 | 2 | fveq2d 5562 | . . . . . . . 8 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → (*Q‘𝑤) = (*Q‘𝑣)) |
| 4 | 3 | eleq1d 2265 | . . . . . . 7 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → ((*Q‘𝑤) ∈ (2nd ‘𝐴) ↔ (*Q‘𝑣) ∈ (2nd ‘𝐴))) |
| 5 | 1, 4 | anbi12d 473 | . . . . . 6 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → ((𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴)) ↔ (𝑢 <Q 𝑣 ∧ (*Q‘𝑣) ∈ (2nd ‘𝐴)))) |
| 6 | 5 | cbvexdva 1944 | . . . . 5 ⊢ (𝑧 = 𝑢 → (∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴)) ↔ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q‘𝑣) ∈ (2nd ‘𝐴)))) |
| 7 | 6 | cbvabv 2321 | . . . 4 ⊢ {𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))} = {𝑢 ∣ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q‘𝑣) ∈ (2nd ‘𝐴))} |
| 8 | simpl 109 | . . . . . . . 8 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → 𝑧 = 𝑢) | |
| 9 | 2, 8 | breq12d 4046 | . . . . . . 7 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → (𝑤 <Q 𝑧 ↔ 𝑣 <Q 𝑢)) |
| 10 | 3 | eleq1d 2265 | . . . . . . 7 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → ((*Q‘𝑤) ∈ (1st ‘𝐴) ↔ (*Q‘𝑣) ∈ (1st ‘𝐴))) |
| 11 | 9, 10 | anbi12d 473 | . . . . . 6 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → ((𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴)) ↔ (𝑣 <Q 𝑢 ∧ (*Q‘𝑣) ∈ (1st ‘𝐴)))) |
| 12 | 11 | cbvexdva 1944 | . . . . 5 ⊢ (𝑧 = 𝑢 → (∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴)) ↔ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q‘𝑣) ∈ (1st ‘𝐴)))) |
| 13 | 12 | cbvabv 2321 | . . . 4 ⊢ {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))} = {𝑢 ∣ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q‘𝑣) ∈ (1st ‘𝐴))} |
| 14 | 7, 13 | opeq12i 3813 | . . 3 ⊢ 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 = 〈{𝑢 ∣ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q‘𝑣) ∈ (2nd ‘𝐴))}, {𝑢 ∣ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q‘𝑣) ∈ (1st ‘𝐴))}〉 |
| 15 | 14 | recexprlempr 7699 | . 2 ⊢ (𝐴 ∈ P → 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 ∈ P) |
| 16 | 14 | recexprlemex 7704 | . 2 ⊢ (𝐴 ∈ P → (𝐴 ·P 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉) = 1P) |
| 17 | oveq2 5930 | . . . 4 ⊢ (𝑥 = 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 → (𝐴 ·P 𝑥) = (𝐴 ·P 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉)) | |
| 18 | 17 | eqeq1d 2205 | . . 3 ⊢ (𝑥 = 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 → ((𝐴 ·P 𝑥) = 1P ↔ (𝐴 ·P 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉) = 1P)) |
| 19 | 18 | rspcev 2868 | . 2 ⊢ ((〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 ∈ P ∧ (𝐴 ·P 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉) = 1P) → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
| 20 | 15, 16, 19 | syl2anc 411 | 1 ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 {cab 2182 ∃wrex 2476 〈cop 3625 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 1st c1st 6196 2nd c2nd 6197 *Qcrq 7351 <Q cltq 7352 Pcnp 7358 1Pc1p 7359 ·P cmp 7361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-enq0 7491 df-nq0 7492 df-0nq0 7493 df-plq0 7494 df-mq0 7495 df-inp 7533 df-i1p 7534 df-imp 7536 |
| This theorem is referenced by: ltmprr 7709 recexgt0sr 7840 |
| Copyright terms: Public domain | W3C validator |