ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexpr GIF version

Theorem recexpr 7600
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
Assertion
Ref Expression
recexpr (𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexpr
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 3994 . . . . . . 7 ((𝑧 = 𝑢𝑤 = 𝑣) → (𝑧 <Q 𝑤𝑢 <Q 𝑣))
2 simpr 109 . . . . . . . . 9 ((𝑧 = 𝑢𝑤 = 𝑣) → 𝑤 = 𝑣)
32fveq2d 5500 . . . . . . . 8 ((𝑧 = 𝑢𝑤 = 𝑣) → (*Q𝑤) = (*Q𝑣))
43eleq1d 2239 . . . . . . 7 ((𝑧 = 𝑢𝑤 = 𝑣) → ((*Q𝑤) ∈ (2nd𝐴) ↔ (*Q𝑣) ∈ (2nd𝐴)))
51, 4anbi12d 470 . . . . . 6 ((𝑧 = 𝑢𝑤 = 𝑣) → ((𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴)) ↔ (𝑢 <Q 𝑣 ∧ (*Q𝑣) ∈ (2nd𝐴))))
65cbvexdva 1922 . . . . 5 (𝑧 = 𝑢 → (∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴)) ↔ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q𝑣) ∈ (2nd𝐴))))
76cbvabv 2295 . . . 4 {𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))} = {𝑢 ∣ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q𝑣) ∈ (2nd𝐴))}
8 simpl 108 . . . . . . . 8 ((𝑧 = 𝑢𝑤 = 𝑣) → 𝑧 = 𝑢)
92, 8breq12d 4002 . . . . . . 7 ((𝑧 = 𝑢𝑤 = 𝑣) → (𝑤 <Q 𝑧𝑣 <Q 𝑢))
103eleq1d 2239 . . . . . . 7 ((𝑧 = 𝑢𝑤 = 𝑣) → ((*Q𝑤) ∈ (1st𝐴) ↔ (*Q𝑣) ∈ (1st𝐴)))
119, 10anbi12d 470 . . . . . 6 ((𝑧 = 𝑢𝑤 = 𝑣) → ((𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴)) ↔ (𝑣 <Q 𝑢 ∧ (*Q𝑣) ∈ (1st𝐴))))
1211cbvexdva 1922 . . . . 5 (𝑧 = 𝑢 → (∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴)) ↔ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q𝑣) ∈ (1st𝐴))))
1312cbvabv 2295 . . . 4 {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))} = {𝑢 ∣ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q𝑣) ∈ (1st𝐴))}
147, 13opeq12i 3770 . . 3 ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ = ⟨{𝑢 ∣ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q𝑣) ∈ (2nd𝐴))}, {𝑢 ∣ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q𝑣) ∈ (1st𝐴))}⟩
1514recexprlempr 7594 . 2 (𝐴P → ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ ∈ P)
1614recexprlemex 7599 . 2 (𝐴P → (𝐴 ·P ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩) = 1P)
17 oveq2 5861 . . . 4 (𝑥 = ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ → (𝐴 ·P 𝑥) = (𝐴 ·P ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩))
1817eqeq1d 2179 . . 3 (𝑥 = ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ → ((𝐴 ·P 𝑥) = 1P ↔ (𝐴 ·P ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩) = 1P))
1918rspcev 2834 . 2 ((⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩ ∈ P ∧ (𝐴 ·P ⟨{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q𝑤) ∈ (2nd𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q𝑤) ∈ (1st𝐴))}⟩) = 1P) → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
2015, 16, 19syl2anc 409 1 (𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wex 1485  wcel 2141  {cab 2156  wrex 2449  cop 3586   class class class wbr 3989  cfv 5198  (class class class)co 5853  1st c1st 6117  2nd c2nd 6118  *Qcrq 7246   <Q cltq 7247  Pcnp 7253  1Pc1p 7254   ·P cmp 7256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-imp 7431
This theorem is referenced by:  ltmprr  7604  recexgt0sr  7735
  Copyright terms: Public domain W3C validator