Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recexpr | GIF version |
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) |
Ref | Expression |
---|---|
recexpr | ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq12 3987 | . . . . . . 7 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → (𝑧 <Q 𝑤 ↔ 𝑢 <Q 𝑣)) | |
2 | simpr 109 | . . . . . . . . 9 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → 𝑤 = 𝑣) | |
3 | 2 | fveq2d 5490 | . . . . . . . 8 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → (*Q‘𝑤) = (*Q‘𝑣)) |
4 | 3 | eleq1d 2235 | . . . . . . 7 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → ((*Q‘𝑤) ∈ (2nd ‘𝐴) ↔ (*Q‘𝑣) ∈ (2nd ‘𝐴))) |
5 | 1, 4 | anbi12d 465 | . . . . . 6 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → ((𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴)) ↔ (𝑢 <Q 𝑣 ∧ (*Q‘𝑣) ∈ (2nd ‘𝐴)))) |
6 | 5 | cbvexdva 1917 | . . . . 5 ⊢ (𝑧 = 𝑢 → (∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴)) ↔ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q‘𝑣) ∈ (2nd ‘𝐴)))) |
7 | 6 | cbvabv 2291 | . . . 4 ⊢ {𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))} = {𝑢 ∣ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q‘𝑣) ∈ (2nd ‘𝐴))} |
8 | simpl 108 | . . . . . . . 8 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → 𝑧 = 𝑢) | |
9 | 2, 8 | breq12d 3995 | . . . . . . 7 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → (𝑤 <Q 𝑧 ↔ 𝑣 <Q 𝑢)) |
10 | 3 | eleq1d 2235 | . . . . . . 7 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → ((*Q‘𝑤) ∈ (1st ‘𝐴) ↔ (*Q‘𝑣) ∈ (1st ‘𝐴))) |
11 | 9, 10 | anbi12d 465 | . . . . . 6 ⊢ ((𝑧 = 𝑢 ∧ 𝑤 = 𝑣) → ((𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴)) ↔ (𝑣 <Q 𝑢 ∧ (*Q‘𝑣) ∈ (1st ‘𝐴)))) |
12 | 11 | cbvexdva 1917 | . . . . 5 ⊢ (𝑧 = 𝑢 → (∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴)) ↔ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q‘𝑣) ∈ (1st ‘𝐴)))) |
13 | 12 | cbvabv 2291 | . . . 4 ⊢ {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))} = {𝑢 ∣ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q‘𝑣) ∈ (1st ‘𝐴))} |
14 | 7, 13 | opeq12i 3763 | . . 3 ⊢ 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 = 〈{𝑢 ∣ ∃𝑣(𝑢 <Q 𝑣 ∧ (*Q‘𝑣) ∈ (2nd ‘𝐴))}, {𝑢 ∣ ∃𝑣(𝑣 <Q 𝑢 ∧ (*Q‘𝑣) ∈ (1st ‘𝐴))}〉 |
15 | 14 | recexprlempr 7573 | . 2 ⊢ (𝐴 ∈ P → 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 ∈ P) |
16 | 14 | recexprlemex 7578 | . 2 ⊢ (𝐴 ∈ P → (𝐴 ·P 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉) = 1P) |
17 | oveq2 5850 | . . . 4 ⊢ (𝑥 = 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 → (𝐴 ·P 𝑥) = (𝐴 ·P 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉)) | |
18 | 17 | eqeq1d 2174 | . . 3 ⊢ (𝑥 = 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 → ((𝐴 ·P 𝑥) = 1P ↔ (𝐴 ·P 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉) = 1P)) |
19 | 18 | rspcev 2830 | . 2 ⊢ ((〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉 ∈ P ∧ (𝐴 ·P 〈{𝑧 ∣ ∃𝑤(𝑧 <Q 𝑤 ∧ (*Q‘𝑤) ∈ (2nd ‘𝐴))}, {𝑧 ∣ ∃𝑤(𝑤 <Q 𝑧 ∧ (*Q‘𝑤) ∈ (1st ‘𝐴))}〉) = 1P) → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
20 | 15, 16, 19 | syl2anc 409 | 1 ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∃wex 1480 ∈ wcel 2136 {cab 2151 ∃wrex 2445 〈cop 3579 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 1st c1st 6106 2nd c2nd 6107 *Qcrq 7225 <Q cltq 7226 Pcnp 7232 1Pc1p 7233 ·P cmp 7235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-i1p 7408 df-imp 7410 |
This theorem is referenced by: ltmprr 7583 recexgt0sr 7714 |
Copyright terms: Public domain | W3C validator |