ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemi1 GIF version

Theorem tfrlemi1 6300
Description: We can define an acceptable function on any ordinal.

As with many of the transfinite recursion theorems, we have a hypothesis that states that 𝐹 is a function and that it is defined for all ordinals. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)

Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
Assertion
Ref Expression
tfrlemi1 ((𝜑𝐶 ∈ On) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
Distinct variable groups:   𝑓,𝑔,𝑢,𝑥,𝑦,𝐴   𝑓,𝐹,𝑔,𝑢,𝑥,𝑦   𝜑,𝑦   𝐶,𝑔,𝑢   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑢,𝑔)   𝐶(𝑥,𝑦,𝑓)

Proof of Theorem tfrlemi1
Dummy variables 𝑒 𝑘 𝑡 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . . . 7 ((𝑧 = 𝑤𝑔 = 𝑘) → 𝑔 = 𝑘)
2 simpl 108 . . . . . . 7 ((𝑧 = 𝑤𝑔 = 𝑘) → 𝑧 = 𝑤)
31, 2fneq12d 5280 . . . . . 6 ((𝑧 = 𝑤𝑔 = 𝑘) → (𝑔 Fn 𝑧𝑘 Fn 𝑤))
41fveq1d 5488 . . . . . . . 8 ((𝑧 = 𝑤𝑔 = 𝑘) → (𝑔𝑢) = (𝑘𝑢))
51reseq1d 4883 . . . . . . . . 9 ((𝑧 = 𝑤𝑔 = 𝑘) → (𝑔𝑢) = (𝑘𝑢))
65fveq2d 5490 . . . . . . . 8 ((𝑧 = 𝑤𝑔 = 𝑘) → (𝐹‘(𝑔𝑢)) = (𝐹‘(𝑘𝑢)))
74, 6eqeq12d 2180 . . . . . . 7 ((𝑧 = 𝑤𝑔 = 𝑘) → ((𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ (𝑘𝑢) = (𝐹‘(𝑘𝑢))))
82, 7raleqbidv 2673 . . . . . 6 ((𝑧 = 𝑤𝑔 = 𝑘) → (∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))
93, 8anbi12d 465 . . . . 5 ((𝑧 = 𝑤𝑔 = 𝑘) → ((𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ (𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))))
109cbvexdva 1917 . . . 4 (𝑧 = 𝑤 → (∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))))
1110imbi2d 229 . . 3 (𝑧 = 𝑤 → ((𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) ↔ (𝜑 → ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))))
12 fneq2 5277 . . . . . 6 (𝑧 = 𝐶 → (𝑔 Fn 𝑧𝑔 Fn 𝐶))
13 raleq 2661 . . . . . 6 (𝑧 = 𝐶 → (∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1412, 13anbi12d 465 . . . . 5 (𝑧 = 𝐶 → ((𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ (𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
1514exbidv 1813 . . . 4 (𝑧 = 𝐶 → (∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
1615imbi2d 229 . . 3 (𝑧 = 𝐶 → ((𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) ↔ (𝜑 → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))))
17 r19.21v 2543 . . . 4 (∀𝑤𝑧 (𝜑 → ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) ↔ (𝜑 → ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))))
18 tfrlemisucfn.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
1918tfrlem3 6279 . . . . . . . 8 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑒𝑧 (𝑔𝑒) = (𝐹‘(𝑔𝑒)))}
20 tfrlemisucfn.2 . . . . . . . . . 10 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
21 fveq2 5486 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
2221eleq1d 2235 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ V ↔ (𝐹𝑧) ∈ V))
2322anbi2d 460 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ (Fun 𝐹 ∧ (𝐹𝑧) ∈ V)))
2423cbvalv 1905 . . . . . . . . . 10 (∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
2520, 24sylib 121 . . . . . . . . 9 (𝜑 → ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
2625adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))) → ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
27 simpr 109 . . . . . . . . . . . . 13 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → 𝑘 = 𝑓)
28 simplr 520 . . . . . . . . . . . . 13 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → 𝑤 = 𝑣)
2927, 28fneq12d 5280 . . . . . . . . . . . 12 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑘 Fn 𝑤𝑓 Fn 𝑣))
3027eleq1d 2235 . . . . . . . . . . . 12 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑘𝐴𝑓𝐴))
31 simpll 519 . . . . . . . . . . . . 13 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → 𝑡 = )
3227fveq2d 5490 . . . . . . . . . . . . . . . 16 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝐹𝑘) = (𝐹𝑓))
3328, 32opeq12d 3766 . . . . . . . . . . . . . . 15 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → ⟨𝑤, (𝐹𝑘)⟩ = ⟨𝑣, (𝐹𝑓)⟩)
3433sneqd 3589 . . . . . . . . . . . . . 14 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → {⟨𝑤, (𝐹𝑘)⟩} = {⟨𝑣, (𝐹𝑓)⟩})
3527, 34uneq12d 3277 . . . . . . . . . . . . 13 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩}) = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))
3631, 35eqeq12d 2180 . . . . . . . . . . . 12 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩}) ↔ = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩})))
3729, 30, 363anbi123d 1302 . . . . . . . . . . 11 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → ((𝑘 Fn 𝑤𝑘𝐴𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩})) ↔ (𝑓 Fn 𝑣𝑓𝐴 = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))))
3837cbvexdva 1917 . . . . . . . . . 10 ((𝑡 = 𝑤 = 𝑣) → (∃𝑘(𝑘 Fn 𝑤𝑘𝐴𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩})) ↔ ∃𝑓(𝑓 Fn 𝑣𝑓𝐴 = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))))
3938cbvrexdva 2702 . . . . . . . . 9 (𝑡 = → (∃𝑤𝑧𝑘(𝑘 Fn 𝑤𝑘𝐴𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩})) ↔ ∃𝑣𝑧𝑓(𝑓 Fn 𝑣𝑓𝐴 = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))))
4039cbvabv 2291 . . . . . . . 8 {𝑡 ∣ ∃𝑤𝑧𝑘(𝑘 Fn 𝑤𝑘𝐴𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩}))} = { ∣ ∃𝑣𝑧𝑓(𝑓 Fn 𝑣𝑓𝐴 = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))}
41 simpl 108 . . . . . . . . 9 ((𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → 𝑧 ∈ On)
4241adantl 275 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))) → 𝑧 ∈ On)
43 simpr 109 . . . . . . . . . 10 ((𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))
44 simpr 109 . . . . . . . . . . . . . 14 ((𝑤 = 𝑣𝑘 = 𝑓) → 𝑘 = 𝑓)
45 simpl 108 . . . . . . . . . . . . . 14 ((𝑤 = 𝑣𝑘 = 𝑓) → 𝑤 = 𝑣)
4644, 45fneq12d 5280 . . . . . . . . . . . . 13 ((𝑤 = 𝑣𝑘 = 𝑓) → (𝑘 Fn 𝑤𝑓 Fn 𝑣))
47 simplr 520 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → 𝑘 = 𝑓)
48 simpr 109 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → 𝑢 = 𝑦)
4947, 48fveq12d 5493 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → (𝑘𝑢) = (𝑓𝑦))
5047, 48reseq12d 4885 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → (𝑘𝑢) = (𝑓𝑦))
5150fveq2d 5490 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → (𝐹‘(𝑘𝑢)) = (𝐹‘(𝑓𝑦)))
5249, 51eqeq12d 2180 . . . . . . . . . . . . . 14 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → ((𝑘𝑢) = (𝐹‘(𝑘𝑢)) ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
53 simpll 519 . . . . . . . . . . . . . 14 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → 𝑤 = 𝑣)
5452, 53cbvraldva2 2699 . . . . . . . . . . . . 13 ((𝑤 = 𝑣𝑘 = 𝑓) → (∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)) ↔ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
5546, 54anbi12d 465 . . . . . . . . . . . 12 ((𝑤 = 𝑣𝑘 = 𝑓) → ((𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) ↔ (𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
5655cbvexdva 1917 . . . . . . . . . . 11 (𝑤 = 𝑣 → (∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) ↔ ∃𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
5756cbvralv 2692 . . . . . . . . . 10 (∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) ↔ ∀𝑣𝑧𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
5843, 57sylib 121 . . . . . . . . 9 ((𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → ∀𝑣𝑧𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
5958adantl 275 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))) → ∀𝑣𝑧𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
6019, 26, 40, 42, 59tfrlemiex 6299 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
6160expr 373 . . . . . 6 ((𝜑𝑧 ∈ On) → (∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
6261expcom 115 . . . . 5 (𝑧 ∈ On → (𝜑 → (∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))))
6362a2d 26 . . . 4 (𝑧 ∈ On → ((𝜑 → ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → (𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))))
6417, 63syl5bi 151 . . 3 (𝑧 ∈ On → (∀𝑤𝑧 (𝜑 → ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → (𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))))
6511, 16, 64tfis3 4563 . 2 (𝐶 ∈ On → (𝜑 → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
6665impcom 124 1 ((𝜑𝐶 ∈ On) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968  wal 1341   = wceq 1343  wex 1480  wcel 2136  {cab 2151  wral 2444  wrex 2445  Vcvv 2726  cun 3114  {csn 3576  cop 3579  Oncon0 4341  cres 4606  Fun wfun 5182   Fn wfn 5183  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-recs 6273
This theorem is referenced by:  tfrlemi14d  6301  tfrexlem  6302
  Copyright terms: Public domain W3C validator