ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemi1 GIF version

Theorem tfrlemi1 6417
Description: We can define an acceptable function on any ordinal.

As with many of the transfinite recursion theorems, we have a hypothesis that states that 𝐹 is a function and that it is defined for all ordinals. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)

Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
Assertion
Ref Expression
tfrlemi1 ((𝜑𝐶 ∈ On) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
Distinct variable groups:   𝑓,𝑔,𝑢,𝑥,𝑦,𝐴   𝑓,𝐹,𝑔,𝑢,𝑥,𝑦   𝜑,𝑦   𝐶,𝑔,𝑢   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑢,𝑔)   𝐶(𝑥,𝑦,𝑓)

Proof of Theorem tfrlemi1
Dummy variables 𝑒 𝑘 𝑡 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . . 7 ((𝑧 = 𝑤𝑔 = 𝑘) → 𝑔 = 𝑘)
2 simpl 109 . . . . . . 7 ((𝑧 = 𝑤𝑔 = 𝑘) → 𝑧 = 𝑤)
31, 2fneq12d 5365 . . . . . 6 ((𝑧 = 𝑤𝑔 = 𝑘) → (𝑔 Fn 𝑧𝑘 Fn 𝑤))
41fveq1d 5577 . . . . . . . 8 ((𝑧 = 𝑤𝑔 = 𝑘) → (𝑔𝑢) = (𝑘𝑢))
51reseq1d 4957 . . . . . . . . 9 ((𝑧 = 𝑤𝑔 = 𝑘) → (𝑔𝑢) = (𝑘𝑢))
65fveq2d 5579 . . . . . . . 8 ((𝑧 = 𝑤𝑔 = 𝑘) → (𝐹‘(𝑔𝑢)) = (𝐹‘(𝑘𝑢)))
74, 6eqeq12d 2219 . . . . . . 7 ((𝑧 = 𝑤𝑔 = 𝑘) → ((𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ (𝑘𝑢) = (𝐹‘(𝑘𝑢))))
82, 7raleqbidv 2717 . . . . . 6 ((𝑧 = 𝑤𝑔 = 𝑘) → (∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))
93, 8anbi12d 473 . . . . 5 ((𝑧 = 𝑤𝑔 = 𝑘) → ((𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ (𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))))
109cbvexdva 1952 . . . 4 (𝑧 = 𝑤 → (∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))))
1110imbi2d 230 . . 3 (𝑧 = 𝑤 → ((𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) ↔ (𝜑 → ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))))
12 fneq2 5362 . . . . . 6 (𝑧 = 𝐶 → (𝑔 Fn 𝑧𝑔 Fn 𝐶))
13 raleq 2701 . . . . . 6 (𝑧 = 𝐶 → (∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1412, 13anbi12d 473 . . . . 5 (𝑧 = 𝐶 → ((𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ (𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
1514exbidv 1847 . . . 4 (𝑧 = 𝐶 → (∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
1615imbi2d 230 . . 3 (𝑧 = 𝐶 → ((𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) ↔ (𝜑 → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))))
17 r19.21v 2582 . . . 4 (∀𝑤𝑧 (𝜑 → ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) ↔ (𝜑 → ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))))
18 tfrlemisucfn.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
1918tfrlem3 6396 . . . . . . . 8 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑒𝑧 (𝑔𝑒) = (𝐹‘(𝑔𝑒)))}
20 tfrlemisucfn.2 . . . . . . . . . 10 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
21 fveq2 5575 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
2221eleq1d 2273 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ V ↔ (𝐹𝑧) ∈ V))
2322anbi2d 464 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ (Fun 𝐹 ∧ (𝐹𝑧) ∈ V)))
2423cbvalv 1940 . . . . . . . . . 10 (∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
2520, 24sylib 122 . . . . . . . . 9 (𝜑 → ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
2625adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))) → ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
27 simpr 110 . . . . . . . . . . . . 13 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → 𝑘 = 𝑓)
28 simplr 528 . . . . . . . . . . . . 13 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → 𝑤 = 𝑣)
2927, 28fneq12d 5365 . . . . . . . . . . . 12 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑘 Fn 𝑤𝑓 Fn 𝑣))
3027eleq1d 2273 . . . . . . . . . . . 12 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑘𝐴𝑓𝐴))
31 simpll 527 . . . . . . . . . . . . 13 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → 𝑡 = )
3227fveq2d 5579 . . . . . . . . . . . . . . . 16 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝐹𝑘) = (𝐹𝑓))
3328, 32opeq12d 3826 . . . . . . . . . . . . . . 15 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → ⟨𝑤, (𝐹𝑘)⟩ = ⟨𝑣, (𝐹𝑓)⟩)
3433sneqd 3645 . . . . . . . . . . . . . 14 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → {⟨𝑤, (𝐹𝑘)⟩} = {⟨𝑣, (𝐹𝑓)⟩})
3527, 34uneq12d 3327 . . . . . . . . . . . . 13 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩}) = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))
3631, 35eqeq12d 2219 . . . . . . . . . . . 12 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩}) ↔ = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩})))
3729, 30, 363anbi123d 1324 . . . . . . . . . . 11 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → ((𝑘 Fn 𝑤𝑘𝐴𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩})) ↔ (𝑓 Fn 𝑣𝑓𝐴 = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))))
3837cbvexdva 1952 . . . . . . . . . 10 ((𝑡 = 𝑤 = 𝑣) → (∃𝑘(𝑘 Fn 𝑤𝑘𝐴𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩})) ↔ ∃𝑓(𝑓 Fn 𝑣𝑓𝐴 = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))))
3938cbvrexdva 2747 . . . . . . . . 9 (𝑡 = → (∃𝑤𝑧𝑘(𝑘 Fn 𝑤𝑘𝐴𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩})) ↔ ∃𝑣𝑧𝑓(𝑓 Fn 𝑣𝑓𝐴 = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))))
4039cbvabv 2329 . . . . . . . 8 {𝑡 ∣ ∃𝑤𝑧𝑘(𝑘 Fn 𝑤𝑘𝐴𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩}))} = { ∣ ∃𝑣𝑧𝑓(𝑓 Fn 𝑣𝑓𝐴 = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))}
41 simpl 109 . . . . . . . . 9 ((𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → 𝑧 ∈ On)
4241adantl 277 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))) → 𝑧 ∈ On)
43 simpr 110 . . . . . . . . . 10 ((𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))
44 simpr 110 . . . . . . . . . . . . . 14 ((𝑤 = 𝑣𝑘 = 𝑓) → 𝑘 = 𝑓)
45 simpl 109 . . . . . . . . . . . . . 14 ((𝑤 = 𝑣𝑘 = 𝑓) → 𝑤 = 𝑣)
4644, 45fneq12d 5365 . . . . . . . . . . . . 13 ((𝑤 = 𝑣𝑘 = 𝑓) → (𝑘 Fn 𝑤𝑓 Fn 𝑣))
47 simplr 528 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → 𝑘 = 𝑓)
48 simpr 110 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → 𝑢 = 𝑦)
4947, 48fveq12d 5582 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → (𝑘𝑢) = (𝑓𝑦))
5047, 48reseq12d 4959 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → (𝑘𝑢) = (𝑓𝑦))
5150fveq2d 5579 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → (𝐹‘(𝑘𝑢)) = (𝐹‘(𝑓𝑦)))
5249, 51eqeq12d 2219 . . . . . . . . . . . . . 14 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → ((𝑘𝑢) = (𝐹‘(𝑘𝑢)) ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
53 simpll 527 . . . . . . . . . . . . . 14 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → 𝑤 = 𝑣)
5452, 53cbvraldva2 2744 . . . . . . . . . . . . 13 ((𝑤 = 𝑣𝑘 = 𝑓) → (∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)) ↔ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
5546, 54anbi12d 473 . . . . . . . . . . . 12 ((𝑤 = 𝑣𝑘 = 𝑓) → ((𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) ↔ (𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
5655cbvexdva 1952 . . . . . . . . . . 11 (𝑤 = 𝑣 → (∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) ↔ ∃𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
5756cbvralv 2737 . . . . . . . . . 10 (∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) ↔ ∀𝑣𝑧𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
5843, 57sylib 122 . . . . . . . . 9 ((𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → ∀𝑣𝑧𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
5958adantl 277 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))) → ∀𝑣𝑧𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
6019, 26, 40, 42, 59tfrlemiex 6416 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
6160expr 375 . . . . . 6 ((𝜑𝑧 ∈ On) → (∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
6261expcom 116 . . . . 5 (𝑧 ∈ On → (𝜑 → (∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))))
6362a2d 26 . . . 4 (𝑧 ∈ On → ((𝜑 → ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → (𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))))
6417, 63biimtrid 152 . . 3 (𝑧 ∈ On → (∀𝑤𝑧 (𝜑 → ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → (𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))))
6511, 16, 64tfis3 4633 . 2 (𝐶 ∈ On → (𝜑 → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
6665impcom 125 1 ((𝜑𝐶 ∈ On) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wal 1370   = wceq 1372  wex 1514  wcel 2175  {cab 2190  wral 2483  wrex 2484  Vcvv 2771  cun 3163  {csn 3632  cop 3635  Oncon0 4409  cres 4676  Fun wfun 5264   Fn wfn 5265  cfv 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-recs 6390
This theorem is referenced by:  tfrlemi14d  6418  tfrexlem  6419
  Copyright terms: Public domain W3C validator