ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemi1 GIF version

Theorem tfrlemi1 6237
Description: We can define an acceptable function on any ordinal.

As with many of the transfinite recursion theorems, we have a hypothesis that states that 𝐹 is a function and that it is defined for all ordinals. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)

Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
Assertion
Ref Expression
tfrlemi1 ((𝜑𝐶 ∈ On) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
Distinct variable groups:   𝑓,𝑔,𝑢,𝑥,𝑦,𝐴   𝑓,𝐹,𝑔,𝑢,𝑥,𝑦   𝜑,𝑦   𝐶,𝑔,𝑢   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑢,𝑔)   𝐶(𝑥,𝑦,𝑓)

Proof of Theorem tfrlemi1
Dummy variables 𝑒 𝑘 𝑡 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . . . 7 ((𝑧 = 𝑤𝑔 = 𝑘) → 𝑔 = 𝑘)
2 simpl 108 . . . . . . 7 ((𝑧 = 𝑤𝑔 = 𝑘) → 𝑧 = 𝑤)
31, 2fneq12d 5223 . . . . . 6 ((𝑧 = 𝑤𝑔 = 𝑘) → (𝑔 Fn 𝑧𝑘 Fn 𝑤))
41fveq1d 5431 . . . . . . . 8 ((𝑧 = 𝑤𝑔 = 𝑘) → (𝑔𝑢) = (𝑘𝑢))
51reseq1d 4826 . . . . . . . . 9 ((𝑧 = 𝑤𝑔 = 𝑘) → (𝑔𝑢) = (𝑘𝑢))
65fveq2d 5433 . . . . . . . 8 ((𝑧 = 𝑤𝑔 = 𝑘) → (𝐹‘(𝑔𝑢)) = (𝐹‘(𝑘𝑢)))
74, 6eqeq12d 2155 . . . . . . 7 ((𝑧 = 𝑤𝑔 = 𝑘) → ((𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ (𝑘𝑢) = (𝐹‘(𝑘𝑢))))
82, 7raleqbidv 2641 . . . . . 6 ((𝑧 = 𝑤𝑔 = 𝑘) → (∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))
93, 8anbi12d 465 . . . . 5 ((𝑧 = 𝑤𝑔 = 𝑘) → ((𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ (𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))))
109cbvexdva 1902 . . . 4 (𝑧 = 𝑤 → (∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))))
1110imbi2d 229 . . 3 (𝑧 = 𝑤 → ((𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) ↔ (𝜑 → ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))))
12 fneq2 5220 . . . . . 6 (𝑧 = 𝐶 → (𝑔 Fn 𝑧𝑔 Fn 𝐶))
13 raleq 2629 . . . . . 6 (𝑧 = 𝐶 → (∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1412, 13anbi12d 465 . . . . 5 (𝑧 = 𝐶 → ((𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ (𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
1514exbidv 1798 . . . 4 (𝑧 = 𝐶 → (∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
1615imbi2d 229 . . 3 (𝑧 = 𝐶 → ((𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) ↔ (𝜑 → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))))
17 r19.21v 2512 . . . 4 (∀𝑤𝑧 (𝜑 → ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) ↔ (𝜑 → ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))))
18 tfrlemisucfn.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
1918tfrlem3 6216 . . . . . . . 8 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑒𝑧 (𝑔𝑒) = (𝐹‘(𝑔𝑒)))}
20 tfrlemisucfn.2 . . . . . . . . . 10 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
21 fveq2 5429 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
2221eleq1d 2209 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ V ↔ (𝐹𝑧) ∈ V))
2322anbi2d 460 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ (Fun 𝐹 ∧ (𝐹𝑧) ∈ V)))
2423cbvalv 1890 . . . . . . . . . 10 (∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
2520, 24sylib 121 . . . . . . . . 9 (𝜑 → ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
2625adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))) → ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
27 simpr 109 . . . . . . . . . . . . 13 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → 𝑘 = 𝑓)
28 simplr 520 . . . . . . . . . . . . 13 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → 𝑤 = 𝑣)
2927, 28fneq12d 5223 . . . . . . . . . . . 12 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑘 Fn 𝑤𝑓 Fn 𝑣))
3027eleq1d 2209 . . . . . . . . . . . 12 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑘𝐴𝑓𝐴))
31 simpll 519 . . . . . . . . . . . . 13 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → 𝑡 = )
3227fveq2d 5433 . . . . . . . . . . . . . . . 16 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝐹𝑘) = (𝐹𝑓))
3328, 32opeq12d 3721 . . . . . . . . . . . . . . 15 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → ⟨𝑤, (𝐹𝑘)⟩ = ⟨𝑣, (𝐹𝑓)⟩)
3433sneqd 3545 . . . . . . . . . . . . . 14 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → {⟨𝑤, (𝐹𝑘)⟩} = {⟨𝑣, (𝐹𝑓)⟩})
3527, 34uneq12d 3236 . . . . . . . . . . . . 13 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩}) = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))
3631, 35eqeq12d 2155 . . . . . . . . . . . 12 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩}) ↔ = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩})))
3729, 30, 363anbi123d 1291 . . . . . . . . . . 11 (((𝑡 = 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → ((𝑘 Fn 𝑤𝑘𝐴𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩})) ↔ (𝑓 Fn 𝑣𝑓𝐴 = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))))
3837cbvexdva 1902 . . . . . . . . . 10 ((𝑡 = 𝑤 = 𝑣) → (∃𝑘(𝑘 Fn 𝑤𝑘𝐴𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩})) ↔ ∃𝑓(𝑓 Fn 𝑣𝑓𝐴 = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))))
3938cbvrexdva 2667 . . . . . . . . 9 (𝑡 = → (∃𝑤𝑧𝑘(𝑘 Fn 𝑤𝑘𝐴𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩})) ↔ ∃𝑣𝑧𝑓(𝑓 Fn 𝑣𝑓𝐴 = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))))
4039cbvabv 2265 . . . . . . . 8 {𝑡 ∣ ∃𝑤𝑧𝑘(𝑘 Fn 𝑤𝑘𝐴𝑡 = (𝑘 ∪ {⟨𝑤, (𝐹𝑘)⟩}))} = { ∣ ∃𝑣𝑧𝑓(𝑓 Fn 𝑣𝑓𝐴 = (𝑓 ∪ {⟨𝑣, (𝐹𝑓)⟩}))}
41 simpl 108 . . . . . . . . 9 ((𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → 𝑧 ∈ On)
4241adantl 275 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))) → 𝑧 ∈ On)
43 simpr 109 . . . . . . . . . 10 ((𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))
44 simpr 109 . . . . . . . . . . . . . 14 ((𝑤 = 𝑣𝑘 = 𝑓) → 𝑘 = 𝑓)
45 simpl 108 . . . . . . . . . . . . . 14 ((𝑤 = 𝑣𝑘 = 𝑓) → 𝑤 = 𝑣)
4644, 45fneq12d 5223 . . . . . . . . . . . . 13 ((𝑤 = 𝑣𝑘 = 𝑓) → (𝑘 Fn 𝑤𝑓 Fn 𝑣))
47 simplr 520 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → 𝑘 = 𝑓)
48 simpr 109 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → 𝑢 = 𝑦)
4947, 48fveq12d 5436 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → (𝑘𝑢) = (𝑓𝑦))
5047, 48reseq12d 4828 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → (𝑘𝑢) = (𝑓𝑦))
5150fveq2d 5433 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → (𝐹‘(𝑘𝑢)) = (𝐹‘(𝑓𝑦)))
5249, 51eqeq12d 2155 . . . . . . . . . . . . . 14 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → ((𝑘𝑢) = (𝐹‘(𝑘𝑢)) ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
53 simpll 519 . . . . . . . . . . . . . 14 (((𝑤 = 𝑣𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → 𝑤 = 𝑣)
5452, 53cbvraldva2 2664 . . . . . . . . . . . . 13 ((𝑤 = 𝑣𝑘 = 𝑓) → (∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)) ↔ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
5546, 54anbi12d 465 . . . . . . . . . . . 12 ((𝑤 = 𝑣𝑘 = 𝑓) → ((𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) ↔ (𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
5655cbvexdva 1902 . . . . . . . . . . 11 (𝑤 = 𝑣 → (∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) ↔ ∃𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
5756cbvralv 2657 . . . . . . . . . 10 (∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) ↔ ∀𝑣𝑧𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
5843, 57sylib 121 . . . . . . . . 9 ((𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → ∀𝑣𝑧𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
5958adantl 275 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))) → ∀𝑣𝑧𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦𝑣 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
6019, 26, 40, 42, 59tfrlemiex 6236 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))))) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
6160expr 373 . . . . . 6 ((𝜑𝑧 ∈ On) → (∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
6261expcom 115 . . . . 5 (𝑧 ∈ On → (𝜑 → (∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢))) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))))
6362a2d 26 . . . 4 (𝑧 ∈ On → ((𝜑 → ∀𝑤𝑧𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → (𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))))
6417, 63syl5bi 151 . . 3 (𝑧 ∈ On → (∀𝑤𝑧 (𝜑 → ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑘𝑢) = (𝐹‘(𝑘𝑢)))) → (𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))))
6511, 16, 64tfis3 4508 . 2 (𝐶 ∈ On → (𝜑 → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
6665impcom 124 1 ((𝜑𝐶 ∈ On) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963  wal 1330   = wceq 1332  wex 1469  wcel 1481  {cab 2126  wral 2417  wrex 2418  Vcvv 2689  cun 3074  {csn 3532  cop 3535  Oncon0 4293  cres 4549  Fun wfun 5125   Fn wfn 5126  cfv 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-recs 6210
This theorem is referenced by:  tfrlemi14d  6238  tfrexlem  6239
  Copyright terms: Public domain W3C validator