Step | Hyp | Ref
| Expression |
1 | | simpr 109 |
. . . . . . 7
⊢ ((𝑧 = 𝑤 ∧ 𝑔 = 𝑘) → 𝑔 = 𝑘) |
2 | | simpl 108 |
. . . . . . 7
⊢ ((𝑧 = 𝑤 ∧ 𝑔 = 𝑘) → 𝑧 = 𝑤) |
3 | 1, 2 | fneq12d 5280 |
. . . . . 6
⊢ ((𝑧 = 𝑤 ∧ 𝑔 = 𝑘) → (𝑔 Fn 𝑧 ↔ 𝑘 Fn 𝑤)) |
4 | 1 | fveq1d 5488 |
. . . . . . . 8
⊢ ((𝑧 = 𝑤 ∧ 𝑔 = 𝑘) → (𝑔‘𝑢) = (𝑘‘𝑢)) |
5 | 1 | reseq1d 4883 |
. . . . . . . . 9
⊢ ((𝑧 = 𝑤 ∧ 𝑔 = 𝑘) → (𝑔 ↾ 𝑢) = (𝑘 ↾ 𝑢)) |
6 | 5 | fveq2d 5490 |
. . . . . . . 8
⊢ ((𝑧 = 𝑤 ∧ 𝑔 = 𝑘) → (𝐹‘(𝑔 ↾ 𝑢)) = (𝐹‘(𝑘 ↾ 𝑢))) |
7 | 4, 6 | eqeq12d 2180 |
. . . . . . 7
⊢ ((𝑧 = 𝑤 ∧ 𝑔 = 𝑘) → ((𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)) ↔ (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢)))) |
8 | 2, 7 | raleqbidv 2673 |
. . . . . 6
⊢ ((𝑧 = 𝑤 ∧ 𝑔 = 𝑘) → (∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)) ↔ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢)))) |
9 | 3, 8 | anbi12d 465 |
. . . . 5
⊢ ((𝑧 = 𝑤 ∧ 𝑔 = 𝑘) → ((𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))) ↔ (𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢))))) |
10 | 9 | cbvexdva 1917 |
. . . 4
⊢ (𝑧 = 𝑤 → (∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))) ↔ ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢))))) |
11 | 10 | imbi2d 229 |
. . 3
⊢ (𝑧 = 𝑤 → ((𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) ↔ (𝜑 → ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢)))))) |
12 | | fneq2 5277 |
. . . . . 6
⊢ (𝑧 = 𝐶 → (𝑔 Fn 𝑧 ↔ 𝑔 Fn 𝐶)) |
13 | | raleq 2661 |
. . . . . 6
⊢ (𝑧 = 𝐶 → (∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)) ↔ ∀𝑢 ∈ 𝐶 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) |
14 | 12, 13 | anbi12d 465 |
. . . . 5
⊢ (𝑧 = 𝐶 → ((𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))) ↔ (𝑔 Fn 𝐶 ∧ ∀𝑢 ∈ 𝐶 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))))) |
15 | 14 | exbidv 1813 |
. . . 4
⊢ (𝑧 = 𝐶 → (∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))) ↔ ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢 ∈ 𝐶 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))))) |
16 | 15 | imbi2d 229 |
. . 3
⊢ (𝑧 = 𝐶 → ((𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) ↔ (𝜑 → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢 ∈ 𝐶 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))))) |
17 | | r19.21v 2543 |
. . . 4
⊢
(∀𝑤 ∈
𝑧 (𝜑 → ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢)))) ↔ (𝜑 → ∀𝑤 ∈ 𝑧 ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢))))) |
18 | | tfrlemisucfn.1 |
. . . . . . . . 9
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
19 | 18 | tfrlem3 6279 |
. . . . . . . 8
⊢ 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑒 ∈ 𝑧 (𝑔‘𝑒) = (𝐹‘(𝑔 ↾ 𝑒)))} |
20 | | tfrlemisucfn.2 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
21 | | fveq2 5486 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
22 | 21 | eleq1d 2235 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ∈ V ↔ (𝐹‘𝑧) ∈ V)) |
23 | 22 | anbi2d 460 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V) ↔ (Fun 𝐹 ∧ (𝐹‘𝑧) ∈ V))) |
24 | 23 | cbvalv 1905 |
. . . . . . . . . 10
⊢
(∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V) ↔ ∀𝑧(Fun 𝐹 ∧ (𝐹‘𝑧) ∈ V)) |
25 | 20, 24 | sylib 121 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧(Fun 𝐹 ∧ (𝐹‘𝑧) ∈ V)) |
26 | 25 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢))))) → ∀𝑧(Fun 𝐹 ∧ (𝐹‘𝑧) ∈ V)) |
27 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ (((𝑡 = ℎ ∧ 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → 𝑘 = 𝑓) |
28 | | simplr 520 |
. . . . . . . . . . . . 13
⊢ (((𝑡 = ℎ ∧ 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → 𝑤 = 𝑣) |
29 | 27, 28 | fneq12d 5280 |
. . . . . . . . . . . 12
⊢ (((𝑡 = ℎ ∧ 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑘 Fn 𝑤 ↔ 𝑓 Fn 𝑣)) |
30 | 27 | eleq1d 2235 |
. . . . . . . . . . . 12
⊢ (((𝑡 = ℎ ∧ 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑘 ∈ 𝐴 ↔ 𝑓 ∈ 𝐴)) |
31 | | simpll 519 |
. . . . . . . . . . . . 13
⊢ (((𝑡 = ℎ ∧ 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → 𝑡 = ℎ) |
32 | 27 | fveq2d 5490 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑡 = ℎ ∧ 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝐹‘𝑘) = (𝐹‘𝑓)) |
33 | 28, 32 | opeq12d 3766 |
. . . . . . . . . . . . . . 15
⊢ (((𝑡 = ℎ ∧ 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → 〈𝑤, (𝐹‘𝑘)〉 = 〈𝑣, (𝐹‘𝑓)〉) |
34 | 33 | sneqd 3589 |
. . . . . . . . . . . . . 14
⊢ (((𝑡 = ℎ ∧ 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → {〈𝑤, (𝐹‘𝑘)〉} = {〈𝑣, (𝐹‘𝑓)〉}) |
35 | 27, 34 | uneq12d 3277 |
. . . . . . . . . . . . 13
⊢ (((𝑡 = ℎ ∧ 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑘 ∪ {〈𝑤, (𝐹‘𝑘)〉}) = (𝑓 ∪ {〈𝑣, (𝐹‘𝑓)〉})) |
36 | 31, 35 | eqeq12d 2180 |
. . . . . . . . . . . 12
⊢ (((𝑡 = ℎ ∧ 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → (𝑡 = (𝑘 ∪ {〈𝑤, (𝐹‘𝑘)〉}) ↔ ℎ = (𝑓 ∪ {〈𝑣, (𝐹‘𝑓)〉}))) |
37 | 29, 30, 36 | 3anbi123d 1302 |
. . . . . . . . . . 11
⊢ (((𝑡 = ℎ ∧ 𝑤 = 𝑣) ∧ 𝑘 = 𝑓) → ((𝑘 Fn 𝑤 ∧ 𝑘 ∈ 𝐴 ∧ 𝑡 = (𝑘 ∪ {〈𝑤, (𝐹‘𝑘)〉})) ↔ (𝑓 Fn 𝑣 ∧ 𝑓 ∈ 𝐴 ∧ ℎ = (𝑓 ∪ {〈𝑣, (𝐹‘𝑓)〉})))) |
38 | 37 | cbvexdva 1917 |
. . . . . . . . . 10
⊢ ((𝑡 = ℎ ∧ 𝑤 = 𝑣) → (∃𝑘(𝑘 Fn 𝑤 ∧ 𝑘 ∈ 𝐴 ∧ 𝑡 = (𝑘 ∪ {〈𝑤, (𝐹‘𝑘)〉})) ↔ ∃𝑓(𝑓 Fn 𝑣 ∧ 𝑓 ∈ 𝐴 ∧ ℎ = (𝑓 ∪ {〈𝑣, (𝐹‘𝑓)〉})))) |
39 | 38 | cbvrexdva 2702 |
. . . . . . . . 9
⊢ (𝑡 = ℎ → (∃𝑤 ∈ 𝑧 ∃𝑘(𝑘 Fn 𝑤 ∧ 𝑘 ∈ 𝐴 ∧ 𝑡 = (𝑘 ∪ {〈𝑤, (𝐹‘𝑘)〉})) ↔ ∃𝑣 ∈ 𝑧 ∃𝑓(𝑓 Fn 𝑣 ∧ 𝑓 ∈ 𝐴 ∧ ℎ = (𝑓 ∪ {〈𝑣, (𝐹‘𝑓)〉})))) |
40 | 39 | cbvabv 2291 |
. . . . . . . 8
⊢ {𝑡 ∣ ∃𝑤 ∈ 𝑧 ∃𝑘(𝑘 Fn 𝑤 ∧ 𝑘 ∈ 𝐴 ∧ 𝑡 = (𝑘 ∪ {〈𝑤, (𝐹‘𝑘)〉}))} = {ℎ ∣ ∃𝑣 ∈ 𝑧 ∃𝑓(𝑓 Fn 𝑣 ∧ 𝑓 ∈ 𝐴 ∧ ℎ = (𝑓 ∪ {〈𝑣, (𝐹‘𝑓)〉}))} |
41 | | simpl 108 |
. . . . . . . . 9
⊢ ((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢)))) → 𝑧 ∈ On) |
42 | 41 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢))))) → 𝑧 ∈ On) |
43 | | simpr 109 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢)))) → ∀𝑤 ∈ 𝑧 ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢)))) |
44 | | simpr 109 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 = 𝑣 ∧ 𝑘 = 𝑓) → 𝑘 = 𝑓) |
45 | | simpl 108 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 = 𝑣 ∧ 𝑘 = 𝑓) → 𝑤 = 𝑣) |
46 | 44, 45 | fneq12d 5280 |
. . . . . . . . . . . . 13
⊢ ((𝑤 = 𝑣 ∧ 𝑘 = 𝑓) → (𝑘 Fn 𝑤 ↔ 𝑓 Fn 𝑣)) |
47 | | simplr 520 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 = 𝑣 ∧ 𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → 𝑘 = 𝑓) |
48 | | simpr 109 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 = 𝑣 ∧ 𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → 𝑢 = 𝑦) |
49 | 47, 48 | fveq12d 5493 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 = 𝑣 ∧ 𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → (𝑘‘𝑢) = (𝑓‘𝑦)) |
50 | 47, 48 | reseq12d 4885 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 = 𝑣 ∧ 𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → (𝑘 ↾ 𝑢) = (𝑓 ↾ 𝑦)) |
51 | 50 | fveq2d 5490 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 = 𝑣 ∧ 𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → (𝐹‘(𝑘 ↾ 𝑢)) = (𝐹‘(𝑓 ↾ 𝑦))) |
52 | 49, 51 | eqeq12d 2180 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 = 𝑣 ∧ 𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → ((𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢)) ↔ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
53 | | simpll 519 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 = 𝑣 ∧ 𝑘 = 𝑓) ∧ 𝑢 = 𝑦) → 𝑤 = 𝑣) |
54 | 52, 53 | cbvraldva2 2699 |
. . . . . . . . . . . . 13
⊢ ((𝑤 = 𝑣 ∧ 𝑘 = 𝑓) → (∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢)) ↔ ∀𝑦 ∈ 𝑣 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
55 | 46, 54 | anbi12d 465 |
. . . . . . . . . . . 12
⊢ ((𝑤 = 𝑣 ∧ 𝑘 = 𝑓) → ((𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢))) ↔ (𝑓 Fn 𝑣 ∧ ∀𝑦 ∈ 𝑣 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
56 | 55 | cbvexdva 1917 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑣 → (∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢))) ↔ ∃𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦 ∈ 𝑣 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
57 | 56 | cbvralv 2692 |
. . . . . . . . . 10
⊢
(∀𝑤 ∈
𝑧 ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢))) ↔ ∀𝑣 ∈ 𝑧 ∃𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦 ∈ 𝑣 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
58 | 43, 57 | sylib 121 |
. . . . . . . . 9
⊢ ((𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢)))) → ∀𝑣 ∈ 𝑧 ∃𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦 ∈ 𝑣 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
59 | 58 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢))))) → ∀𝑣 ∈ 𝑧 ∃𝑓(𝑓 Fn 𝑣 ∧ ∀𝑦 ∈ 𝑣 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
60 | 19, 26, 40, 42, 59 | tfrlemiex 6299 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ On ∧ ∀𝑤 ∈ 𝑧 ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢))))) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) |
61 | 60 | expr 373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ On) → (∀𝑤 ∈ 𝑧 ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢))) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))))) |
62 | 61 | expcom 115 |
. . . . 5
⊢ (𝑧 ∈ On → (𝜑 → (∀𝑤 ∈ 𝑧 ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢))) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))))) |
63 | 62 | a2d 26 |
. . . 4
⊢ (𝑧 ∈ On → ((𝜑 → ∀𝑤 ∈ 𝑧 ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢)))) → (𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))))) |
64 | 17, 63 | syl5bi 151 |
. . 3
⊢ (𝑧 ∈ On → (∀𝑤 ∈ 𝑧 (𝜑 → ∃𝑘(𝑘 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑘‘𝑢) = (𝐹‘(𝑘 ↾ 𝑢)))) → (𝜑 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))))) |
65 | 11, 16, 64 | tfis3 4563 |
. 2
⊢ (𝐶 ∈ On → (𝜑 → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢 ∈ 𝐶 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))))) |
66 | 65 | impcom 124 |
1
⊢ ((𝜑 ∧ 𝐶 ∈ On) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢 ∈ 𝐶 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) |