ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrexw GIF version

Theorem cbvrexw 2710
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 2706 with more disjoint variable conditions. Although we don't do so yet, we expect the disjoint variable conditions will allow us to remove reliance on ax-i12 1517 and ax-bndl 1519 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvralw.1 𝑦𝜑
cbvralw.2 𝑥𝜓
cbvralw.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrexw (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvrexw
StepHypRef Expression
1 nfcv 2329 . 2 𝑥𝐴
2 nfcv 2329 . 2 𝑦𝐴
3 cbvralw.1 . 2 𝑦𝜑
4 cbvralw.2 . 2 𝑥𝜓
5 cbvralw.3 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
61, 2, 3, 4, 5cbvrexfw 2706 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wnf 1470  wrex 2466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-sb 1773  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471
This theorem is referenced by:  elabrexg  5772
  Copyright terms: Public domain W3C validator