ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrexfw GIF version

Theorem cbvrexfw 2688
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf 2690 with a disjoint variable condition, which does not require ax-13 2143. (Contributed by FL, 27-Apr-2008.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvrexfw.1 𝑥𝐴
cbvrexfw.2 𝑦𝐴
cbvrexfw.3 𝑦𝜑
cbvrexfw.4 𝑥𝜓
cbvrexfw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrexfw (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvrexfw
StepHypRef Expression
1 cbvrexfw.2 . . . . 5 𝑦𝐴
21nfcri 2306 . . . 4 𝑦 𝑥𝐴
3 cbvrexfw.3 . . . 4 𝑦𝜑
42, 3nfan 1558 . . 3 𝑦(𝑥𝐴𝜑)
5 cbvrexfw.1 . . . . 5 𝑥𝐴
65nfcri 2306 . . . 4 𝑥 𝑦𝐴
7 cbvrexfw.4 . . . 4 𝑥𝜓
86, 7nfan 1558 . . 3 𝑥(𝑦𝐴𝜓)
9 eleq1w 2231 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
10 cbvrexfw.5 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
119, 10anbi12d 470 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
124, 8, 11cbvexv1 1745 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑦(𝑦𝐴𝜓))
13 df-rex 2454 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
14 df-rex 2454 . 2 (∃𝑦𝐴 𝜓 ↔ ∃𝑦(𝑦𝐴𝜓))
1512, 13, 143bitr4i 211 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wnf 1453  wex 1485  wcel 2141  wnfc 2299  wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454
This theorem is referenced by:  nnwofdc  11993
  Copyright terms: Public domain W3C validator