| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvrexfw | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf 2757 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1553 and ax-bndl 1555 in the proof. (Contributed by FL, 27-Apr-2008.) (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvrexfw.1 | ⊢ Ⅎ𝑥𝐴 |
| cbvrexfw.2 | ⊢ Ⅎ𝑦𝐴 |
| cbvrexfw.3 | ⊢ Ⅎ𝑦𝜑 |
| cbvrexfw.4 | ⊢ Ⅎ𝑥𝜓 |
| cbvrexfw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrexfw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrexfw.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 2 | 1 | nfcri 2366 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
| 3 | cbvrexfw.3 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 2, 3 | nfan 1611 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 5 | cbvrexfw.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 5 | nfcri 2366 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 7 | cbvrexfw.4 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 8 | 6, 7 | nfan 1611 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓) |
| 9 | eleq1w 2290 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 10 | cbvrexfw.5 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 11 | 9, 10 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 12 | 4, 8, 11 | cbvexv1 1798 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 13 | df-rex 2514 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 14 | df-rex 2514 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜓 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 15 | 12, 13, 14 | 3bitr4i 212 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 Ⅎwnf 1506 ∃wex 1538 ∈ wcel 2200 Ⅎwnfc 2359 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 |
| This theorem is referenced by: cbvrexw 2759 nnwofdc 12554 |
| Copyright terms: Public domain | W3C validator |