Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvrexfw | GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf 2685 with a disjoint variable condition, which does not require ax-13 2138. (Contributed by FL, 27-Apr-2008.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvrexfw.1 | ⊢ Ⅎ𝑥𝐴 |
cbvrexfw.2 | ⊢ Ⅎ𝑦𝐴 |
cbvrexfw.3 | ⊢ Ⅎ𝑦𝜑 |
cbvrexfw.4 | ⊢ Ⅎ𝑥𝜓 |
cbvrexfw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrexfw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvrexfw.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
2 | 1 | nfcri 2301 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
3 | cbvrexfw.3 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
4 | 2, 3 | nfan 1553 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
5 | cbvrexfw.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
6 | 5 | nfcri 2301 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
7 | cbvrexfw.4 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
8 | 6, 7 | nfan 1553 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓) |
9 | eleq1w 2226 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
10 | cbvrexfw.5 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
11 | 9, 10 | anbi12d 465 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
12 | 4, 8, 11 | cbvexv1 1740 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
13 | df-rex 2449 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
14 | df-rex 2449 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜓 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
15 | 12, 13, 14 | 3bitr4i 211 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 Ⅎwnf 1448 ∃wex 1480 ∈ wcel 2136 Ⅎwnfc 2294 ∃wrex 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 |
This theorem is referenced by: nnwofdc 11967 |
Copyright terms: Public domain | W3C validator |