ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrexfw GIF version

Theorem cbvrexfw 2706
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf 2708 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1517 and ax-bndl 1519 in the proof. (Contributed by FL, 27-Apr-2008.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvrexfw.1 𝑥𝐴
cbvrexfw.2 𝑦𝐴
cbvrexfw.3 𝑦𝜑
cbvrexfw.4 𝑥𝜓
cbvrexfw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrexfw (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvrexfw
StepHypRef Expression
1 cbvrexfw.2 . . . . 5 𝑦𝐴
21nfcri 2323 . . . 4 𝑦 𝑥𝐴
3 cbvrexfw.3 . . . 4 𝑦𝜑
42, 3nfan 1575 . . 3 𝑦(𝑥𝐴𝜑)
5 cbvrexfw.1 . . . . 5 𝑥𝐴
65nfcri 2323 . . . 4 𝑥 𝑦𝐴
7 cbvrexfw.4 . . . 4 𝑥𝜓
86, 7nfan 1575 . . 3 𝑥(𝑦𝐴𝜓)
9 eleq1w 2248 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
10 cbvrexfw.5 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
119, 10anbi12d 473 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
124, 8, 11cbvexv1 1762 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑦(𝑦𝐴𝜓))
13 df-rex 2471 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
14 df-rex 2471 . 2 (∃𝑦𝐴 𝜓 ↔ ∃𝑦(𝑦𝐴𝜓))
1512, 13, 143bitr4i 212 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wnf 1470  wex 1502  wcel 2158  wnfc 2316  wrex 2466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-sb 1773  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471
This theorem is referenced by:  cbvrexw  2710  nnwofdc  12052
  Copyright terms: Public domain W3C validator