![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvral | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) |
Ref | Expression |
---|---|
cbvral.1 | ⊢ Ⅎ𝑦𝜑 |
cbvral.2 | ⊢ Ⅎ𝑥𝜓 |
cbvral.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvral | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2329 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2329 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvral.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | cbvral.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvral.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvralf 2707 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1470 ∀wral 2465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 |
This theorem is referenced by: cbvralv 2715 cbvralsv 2731 cbviin 3936 frind 4364 ralxpf 4785 eqfnfv2f 5630 ralrnmpt 5671 dff13f 5784 ofrfval2 6112 fmpox 6214 cbvixp 6728 mptelixpg 6747 xpf1o 6857 indstr 9606 fsum3 11408 fsum00 11483 mertenslem2 11557 fprodcl2lem 11626 fprodle 11661 ctiunctal 12455 cnmpt11 14054 cnmpt21 14062 bj-bdfindes 14972 bj-findes 15004 |
Copyright terms: Public domain | W3C validator |