ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvral GIF version

Theorem cbvral 2741
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.)
Hypotheses
Ref Expression
cbvral.1 𝑦𝜑
cbvral.2 𝑥𝜓
cbvral.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvral (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvral
StepHypRef Expression
1 nfcv 2352 . 2 𝑥𝐴
2 nfcv 2352 . 2 𝑦𝐴
3 cbvral.1 . 2 𝑦𝜑
4 cbvral.2 . 2 𝑥𝜓
5 cbvral.3 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
61, 2, 3, 4, 5cbvralf 2736 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wnf 1486  wral 2488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493
This theorem is referenced by:  cbvralv  2745  cbvralsv  2761  cbviin  3982  frind  4420  ralxpf  4845  eqfnfv2f  5709  ralrnmpt  5750  dff13f  5867  ofrfval2  6205  uchoice  6253  fmpox  6316  cbvixp  6832  mptelixpg  6851  xpf1o  6973  indstr  9756  fsum3  11864  fsum00  11939  mertenslem2  12013  fprodcl2lem  12082  fprodle  12117  ctiunctal  12978  cnmpt11  14922  cnmpt21  14930  bj-bdfindes  16222  bj-findes  16254
  Copyright terms: Public domain W3C validator