Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvral GIF version

Theorem cbvral 2650
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.)
Hypotheses
Ref Expression
cbvral.1 𝑦𝜑
cbvral.2 𝑥𝜓
cbvral.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvral (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvral
StepHypRef Expression
1 nfcv 2281 . 2 𝑥𝐴
2 nfcv 2281 . 2 𝑦𝐴
3 cbvral.1 . 2 𝑦𝜑
4 cbvral.2 . 2 𝑥𝜓
5 cbvral.3 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
61, 2, 3, 4, 5cbvralf 2648 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104  Ⅎwnf 1436  ∀wral 2416 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421 This theorem is referenced by:  cbvralv  2654  cbvralsv  2668  cbviin  3851  frind  4274  ralxpf  4685  eqfnfv2f  5522  ralrnmpt  5562  dff13f  5671  ofrfval2  5998  fmpox  6098  cbvixp  6609  mptelixpg  6628  xpf1o  6738  indstr  9400  fsum3  11168  fsum00  11243  mertenslem2  11317  ctiunctal  11965  cnmpt11  12466  cnmpt21  12474  bj-bdfindes  13206  bj-findes  13238
 Copyright terms: Public domain W3C validator