| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvral | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) |
| Ref | Expression |
|---|---|
| cbvral.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvral.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvral.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvral | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2372 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvral.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvral.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvral.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvralf 2756 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1506 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 |
| This theorem is referenced by: cbvralv 2765 cbvralsv 2781 cbviin 4003 frind 4443 ralxpf 4868 eqfnfv2f 5738 ralrnmpt 5779 dff13f 5900 ofrfval2 6241 uchoice 6289 fmpox 6352 cbvixp 6870 mptelixpg 6889 xpf1o 7013 indstr 9796 fsum3 11906 fsum00 11981 mertenslem2 12055 fprodcl2lem 12124 fprodle 12159 ctiunctal 13020 cnmpt11 14965 cnmpt21 14973 bj-bdfindes 16336 bj-findes 16368 |
| Copyright terms: Public domain | W3C validator |