| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvral | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) |
| Ref | Expression |
|---|---|
| cbvral.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvral.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvral.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvral | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2339 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvral.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvral.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvral.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvralf 2721 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1474 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 |
| This theorem is referenced by: cbvralv 2729 cbvralsv 2745 cbviin 3955 frind 4388 ralxpf 4813 eqfnfv2f 5664 ralrnmpt 5705 dff13f 5818 ofrfval2 6153 uchoice 6196 fmpox 6259 cbvixp 6775 mptelixpg 6794 xpf1o 6906 indstr 9669 fsum3 11554 fsum00 11629 mertenslem2 11703 fprodcl2lem 11772 fprodle 11807 ctiunctal 12668 cnmpt11 14529 cnmpt21 14537 bj-bdfindes 15605 bj-findes 15637 |
| Copyright terms: Public domain | W3C validator |