| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvral | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) |
| Ref | Expression |
|---|---|
| cbvral.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvral.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvral.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvral | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2352 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2352 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvral.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvral.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvral.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvralf 2736 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1486 ∀wral 2488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 |
| This theorem is referenced by: cbvralv 2745 cbvralsv 2761 cbviin 3982 frind 4420 ralxpf 4845 eqfnfv2f 5709 ralrnmpt 5750 dff13f 5867 ofrfval2 6205 uchoice 6253 fmpox 6316 cbvixp 6832 mptelixpg 6851 xpf1o 6973 indstr 9756 fsum3 11864 fsum00 11939 mertenslem2 12013 fprodcl2lem 12082 fprodle 12117 ctiunctal 12978 cnmpt11 14922 cnmpt21 14930 bj-bdfindes 16222 bj-findes 16254 |
| Copyright terms: Public domain | W3C validator |