Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvral | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) |
Ref | Expression |
---|---|
cbvral.1 | ⊢ Ⅎ𝑦𝜑 |
cbvral.2 | ⊢ Ⅎ𝑥𝜓 |
cbvral.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvral | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2308 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvral.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | cbvral.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvral.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvralf 2685 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 Ⅎwnf 1448 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 |
This theorem is referenced by: cbvralv 2692 cbvralsv 2708 cbviin 3904 frind 4330 ralxpf 4750 eqfnfv2f 5587 ralrnmpt 5627 dff13f 5738 ofrfval2 6066 fmpox 6168 cbvixp 6681 mptelixpg 6700 xpf1o 6810 indstr 9531 fsum3 11328 fsum00 11403 mertenslem2 11477 fprodcl2lem 11546 fprodle 11581 ctiunctal 12374 cnmpt11 12923 cnmpt21 12931 bj-bdfindes 13831 bj-findes 13863 |
Copyright terms: Public domain | W3C validator |