ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabrexg GIF version

Theorem elabrexg 5855
Description: Elementhood in an image set. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elabrexg ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem elabrexg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tru 1379 . . . . 5
2 csbeq1a 3113 . . . . . . . 8 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
32equcoms 1734 . . . . . . 7 (𝑧 = 𝑥𝐵 = 𝑧 / 𝑥𝐵)
4 trud 1391 . . . . . . 7 (𝑧 = 𝑥 → ⊤)
53, 42thd 175 . . . . . 6 (𝑧 = 𝑥 → (𝐵 = 𝑧 / 𝑥𝐵 ↔ ⊤))
65rspcev 2887 . . . . 5 ((𝑥𝐴 ∧ ⊤) → ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
71, 6mpan2 425 . . . 4 (𝑥𝐴 → ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
87adantr 276 . . 3 ((𝑥𝐴𝐵𝑉) → ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
9 eqeq1 2216 . . . . . 6 (𝑦 = 𝐵 → (𝑦 = 𝑧 / 𝑥𝐵𝐵 = 𝑧 / 𝑥𝐵))
109rexbidv 2511 . . . . 5 (𝑦 = 𝐵 → (∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵 ↔ ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵))
1110elabg 2929 . . . 4 (𝐵𝑉 → (𝐵 ∈ {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵} ↔ ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵))
1211adantl 277 . . 3 ((𝑥𝐴𝐵𝑉) → (𝐵 ∈ {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵} ↔ ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵))
138, 12mpbird 167 . 2 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵})
14 nfv 1554 . . . 4 𝑧 𝑦 = 𝐵
15 nfcsb1v 3137 . . . . 5 𝑥𝑧 / 𝑥𝐵
1615nfeq2 2364 . . . 4 𝑥 𝑦 = 𝑧 / 𝑥𝐵
172eqeq2d 2221 . . . 4 (𝑥 = 𝑧 → (𝑦 = 𝐵𝑦 = 𝑧 / 𝑥𝐵))
1814, 16, 17cbvrexw 2739 . . 3 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵)
1918abbii 2325 . 2 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵}
2013, 19eleqtrrdi 2303 1 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wtru 1376  wcel 2180  {cab 2195  wrex 2489  csb 3104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494  df-v 2781  df-sbc 3009  df-csb 3105
This theorem is referenced by:  lss1d  14312
  Copyright terms: Public domain W3C validator