| Step | Hyp | Ref
 | Expression | 
| 1 |   | tru 1368 | 
. . . . 5
⊢
⊤ | 
| 2 |   | csbeq1a 3093 | 
. . . . . . . 8
⊢ (𝑥 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | 
| 3 | 2 | equcoms 1722 | 
. . . . . . 7
⊢ (𝑧 = 𝑥 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | 
| 4 |   | trud 1380 | 
. . . . . . 7
⊢ (𝑧 = 𝑥 → ⊤) | 
| 5 | 3, 4 | 2thd 175 | 
. . . . . 6
⊢ (𝑧 = 𝑥 → (𝐵 = ⦋𝑧 / 𝑥⦌𝐵 ↔ ⊤)) | 
| 6 | 5 | rspcev 2868 | 
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ ⊤) → ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | 
| 7 | 1, 6 | mpan2 425 | 
. . . 4
⊢ (𝑥 ∈ 𝐴 → ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | 
| 8 | 7 | adantr 276 | 
. . 3
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | 
| 9 |   | eqeq1 2203 | 
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝑦 = ⦋𝑧 / 𝑥⦌𝐵 ↔ 𝐵 = ⦋𝑧 / 𝑥⦌𝐵)) | 
| 10 | 9 | rexbidv 2498 | 
. . . . 5
⊢ (𝑦 = 𝐵 → (∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵 ↔ ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵)) | 
| 11 | 10 | elabg 2910 | 
. . . 4
⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵} ↔ ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵)) | 
| 12 | 11 | adantl 277 | 
. . 3
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → (𝐵 ∈ {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵} ↔ ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵)) | 
| 13 | 8, 12 | mpbird 167 | 
. 2
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵}) | 
| 14 |   | nfv 1542 | 
. . . 4
⊢
Ⅎ𝑧 𝑦 = 𝐵 | 
| 15 |   | nfcsb1v 3117 | 
. . . . 5
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 | 
| 16 | 15 | nfeq2 2351 | 
. . . 4
⊢
Ⅎ𝑥 𝑦 = ⦋𝑧 / 𝑥⦌𝐵 | 
| 17 | 2 | eqeq2d 2208 | 
. . . 4
⊢ (𝑥 = 𝑧 → (𝑦 = 𝐵 ↔ 𝑦 = ⦋𝑧 / 𝑥⦌𝐵)) | 
| 18 | 14, 16, 17 | cbvrexw 2724 | 
. . 3
⊢
(∃𝑥 ∈
𝐴 𝑦 = 𝐵 ↔ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵) | 
| 19 | 18 | abbii 2312 | 
. 2
⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵} | 
| 20 | 13, 19 | eleqtrrdi 2290 | 
1
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |