| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvsbc | GIF version | ||
| Description: Change bound variables in a wff substitution. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| cbvsbc.1 | ⊢ Ⅎ𝑦𝜑 | 
| cbvsbc.2 | ⊢ Ⅎ𝑥𝜓 | 
| cbvsbc.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbvsbc | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvsbc.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | cbvsbc.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvsbc.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvab 2320 | . . 3 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | 
| 5 | 4 | eleq2i 2263 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) | 
| 6 | df-sbc 2990 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 7 | df-sbc 2990 | . 2 ⊢ ([𝐴 / 𝑦]𝜓 ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) | |
| 8 | 5, 6, 7 | 3bitr4i 212 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1474 ∈ wcel 2167 {cab 2182 [wsbc 2989 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 | 
| This theorem is referenced by: cbvsbcv 3019 cbvcsb 3089 | 
| Copyright terms: Public domain | W3C validator |