| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvsbc | GIF version | ||
| Description: Change bound variables in a wff substitution. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| cbvsbc.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvsbc.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvsbc.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvsbc | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsbc.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | cbvsbc.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvsbc.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvab 2330 | . . 3 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| 5 | 4 | eleq2i 2273 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) |
| 6 | df-sbc 3000 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 7 | df-sbc 3000 | . 2 ⊢ ([𝐴 / 𝑦]𝜓 ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) | |
| 8 | 5, 6, 7 | 3bitr4i 212 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1484 ∈ wcel 2177 {cab 2192 [wsbc 2999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-sbc 3000 |
| This theorem is referenced by: cbvsbcv 3029 cbvcsb 3099 |
| Copyright terms: Public domain | W3C validator |