ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsbc GIF version

Theorem cbvsbc 2983
Description: Change bound variables in a wff substitution. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypotheses
Ref Expression
cbvsbc.1 𝑦𝜑
cbvsbc.2 𝑥𝜓
cbvsbc.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvsbc ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)

Proof of Theorem cbvsbc
StepHypRef Expression
1 cbvsbc.1 . . . 4 𝑦𝜑
2 cbvsbc.2 . . . 4 𝑥𝜓
3 cbvsbc.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvab 2294 . . 3 {𝑥𝜑} = {𝑦𝜓}
54eleq2i 2237 . 2 (𝐴 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑦𝜓})
6 df-sbc 2956 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
7 df-sbc 2956 . 2 ([𝐴 / 𝑦]𝜓𝐴 ∈ {𝑦𝜓})
85, 6, 73bitr4i 211 1 ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wnf 1453  wcel 2141  {cab 2156  [wsbc 2955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-sbc 2956
This theorem is referenced by:  cbvsbcv  2984  cbvcsb  3054
  Copyright terms: Public domain W3C validator