ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvcsb GIF version

Theorem cbvcsb 3050
Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
cbvcsb.1 𝑦𝐶
cbvcsb.2 𝑥𝐷
cbvcsb.3 (𝑥 = 𝑦𝐶 = 𝐷)
Assertion
Ref Expression
cbvcsb 𝐴 / 𝑥𝐶 = 𝐴 / 𝑦𝐷

Proof of Theorem cbvcsb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvcsb.1 . . . . 5 𝑦𝐶
21nfcri 2302 . . . 4 𝑦 𝑧𝐶
3 cbvcsb.2 . . . . 5 𝑥𝐷
43nfcri 2302 . . . 4 𝑥 𝑧𝐷
5 cbvcsb.3 . . . . 5 (𝑥 = 𝑦𝐶 = 𝐷)
65eleq2d 2236 . . . 4 (𝑥 = 𝑦 → (𝑧𝐶𝑧𝐷))
72, 4, 6cbvsbc 2979 . . 3 ([𝐴 / 𝑥]𝑧𝐶[𝐴 / 𝑦]𝑧𝐷)
87abbii 2282 . 2 {𝑧[𝐴 / 𝑥]𝑧𝐶} = {𝑧[𝐴 / 𝑦]𝑧𝐷}
9 df-csb 3046 . 2 𝐴 / 𝑥𝐶 = {𝑧[𝐴 / 𝑥]𝑧𝐶}
10 df-csb 3046 . 2 𝐴 / 𝑦𝐷 = {𝑧[𝐴 / 𝑦]𝑧𝐷}
118, 9, 103eqtr4i 2196 1 𝐴 / 𝑥𝐶 = 𝐴 / 𝑦𝐷
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  {cab 2151  wnfc 2295  [wsbc 2951  csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-sbc 2952  df-csb 3046
This theorem is referenced by:  cbvcsbv  3051  cbvsum  11301
  Copyright terms: Public domain W3C validator