| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvcsb | GIF version | ||
| Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| Ref | Expression |
|---|---|
| cbvcsb.1 | ⊢ Ⅎ𝑦𝐶 |
| cbvcsb.2 | ⊢ Ⅎ𝑥𝐷 |
| cbvcsb.3 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvcsb | ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvcsb.1 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
| 2 | 1 | nfcri 2346 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐶 |
| 3 | cbvcsb.2 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
| 4 | 3 | nfcri 2346 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐷 |
| 5 | cbvcsb.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
| 6 | 5 | eleq2d 2279 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐶 ↔ 𝑧 ∈ 𝐷)) |
| 7 | 2, 4, 6 | cbvsbc 3037 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐶 ↔ [𝐴 / 𝑦]𝑧 ∈ 𝐷) |
| 8 | 7 | abbii 2325 | . 2 ⊢ {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐶} = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐷} |
| 9 | df-csb 3105 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐶} | |
| 10 | df-csb 3105 | . 2 ⊢ ⦋𝐴 / 𝑦⦌𝐷 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐷} | |
| 11 | 8, 9, 10 | 3eqtr4i 2240 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 {cab 2195 Ⅎwnfc 2339 [wsbc 3008 ⦋csb 3104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-sbc 3009 df-csb 3105 |
| This theorem is referenced by: cbvcsbv 3110 cbvsum 11837 |
| Copyright terms: Public domain | W3C validator |