| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvcsb | GIF version | ||
| Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| cbvcsb.1 | ⊢ Ⅎ𝑦𝐶 | 
| cbvcsb.2 | ⊢ Ⅎ𝑥𝐷 | 
| cbvcsb.3 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | 
| Ref | Expression | 
|---|---|
| cbvcsb | ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvcsb.1 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
| 2 | 1 | nfcri 2333 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐶 | 
| 3 | cbvcsb.2 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
| 4 | 3 | nfcri 2333 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐷 | 
| 5 | cbvcsb.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
| 6 | 5 | eleq2d 2266 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐶 ↔ 𝑧 ∈ 𝐷)) | 
| 7 | 2, 4, 6 | cbvsbc 3018 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐶 ↔ [𝐴 / 𝑦]𝑧 ∈ 𝐷) | 
| 8 | 7 | abbii 2312 | . 2 ⊢ {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐶} = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐷} | 
| 9 | df-csb 3085 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐶} | |
| 10 | df-csb 3085 | . 2 ⊢ ⦋𝐴 / 𝑦⦌𝐷 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐷} | |
| 11 | 8, 9, 10 | 3eqtr4i 2227 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 {cab 2182 Ⅎwnfc 2326 [wsbc 2989 ⦋csb 3084 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-sbc 2990 df-csb 3085 | 
| This theorem is referenced by: cbvcsbv 3090 cbvsum 11525 | 
| Copyright terms: Public domain | W3C validator |