Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvab GIF version

Theorem cbvab 2264
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by Andrew Salmon, 11-Jul-2011.)
Hypotheses
Ref Expression
cbvab.1 𝑦𝜑
cbvab.2 𝑥𝜓
cbvab.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvab {𝑥𝜑} = {𝑦𝜓}

Proof of Theorem cbvab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvab.2 . . . . 5 𝑥𝜓
21nfsb 1920 . . . 4 𝑥[𝑧 / 𝑦]𝜓
3 cbvab.1 . . . . . 6 𝑦𝜑
4 cbvab.3 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜓))
54equcoms 1685 . . . . . . 7 (𝑦 = 𝑥 → (𝜑𝜓))
65bicomd 140 . . . . . 6 (𝑦 = 𝑥 → (𝜓𝜑))
73, 6sbie 1765 . . . . 5 ([𝑥 / 𝑦]𝜓𝜑)
8 sbequ 1813 . . . . 5 (𝑥 = 𝑧 → ([𝑥 / 𝑦]𝜓 ↔ [𝑧 / 𝑦]𝜓))
97, 8bitr3id 193 . . . 4 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜓))
102, 9sbie 1765 . . 3 ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)
11 df-clab 2127 . . 3 (𝑧 ∈ {𝑥𝜑} ↔ [𝑧 / 𝑥]𝜑)
12 df-clab 2127 . . 3 (𝑧 ∈ {𝑦𝜓} ↔ [𝑧 / 𝑦]𝜓)
1310, 11, 123bitr4i 211 . 2 (𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦𝜓})
1413eqriv 2137 1 {𝑥𝜑} = {𝑦𝜓}
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104   = wceq 1332  Ⅎwnf 1437   ∈ wcel 1481  [wsb 1736  {cab 2126 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133 This theorem is referenced by:  cbvabv  2265  cbvrab  2687  cbvsbc  2941  cbvrabcsf  3070  dfdmf  4740  dfrnf  4788  funfvdm2f  5494  abrexex2g  6026  abrexex2  6030
 Copyright terms: Public domain W3C validator