ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvab GIF version

Theorem cbvab 2333
Description: Rule used to change bound variables, using implicit substitution. (Contributed by Andrew Salmon, 11-Jul-2011.)
Hypotheses
Ref Expression
cbvab.1 𝑦𝜑
cbvab.2 𝑥𝜓
cbvab.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvab {𝑥𝜑} = {𝑦𝜓}

Proof of Theorem cbvab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvab.2 . . . . 5 𝑥𝜓
21nfsb 1977 . . . 4 𝑥[𝑧 / 𝑦]𝜓
3 cbvab.1 . . . . . 6 𝑦𝜑
4 cbvab.3 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜓))
54equcoms 1734 . . . . . . 7 (𝑦 = 𝑥 → (𝜑𝜓))
65bicomd 141 . . . . . 6 (𝑦 = 𝑥 → (𝜓𝜑))
73, 6sbie 1817 . . . . 5 ([𝑥 / 𝑦]𝜓𝜑)
8 sbequ 1866 . . . . 5 (𝑥 = 𝑧 → ([𝑥 / 𝑦]𝜓 ↔ [𝑧 / 𝑦]𝜓))
97, 8bitr3id 194 . . . 4 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜓))
102, 9sbie 1817 . . 3 ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)
11 df-clab 2196 . . 3 (𝑧 ∈ {𝑥𝜑} ↔ [𝑧 / 𝑥]𝜑)
12 df-clab 2196 . . 3 (𝑧 ∈ {𝑦𝜓} ↔ [𝑧 / 𝑦]𝜓)
1310, 11, 123bitr4i 212 . 2 (𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦𝜓})
1413eqriv 2206 1 {𝑥𝜑} = {𝑦𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1375  wnf 1486  [wsb 1788  wcel 2180  {cab 2195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202
This theorem is referenced by:  cbvabv  2334  cbvrab  2777  cbvsbc  3037  cbvrabcsf  3170  dfdmf  4893  dfrnf  4941  funfvdm2f  5672  abrexex2g  6235  abrexex2  6239
  Copyright terms: Public domain W3C validator