ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvab GIF version

Theorem cbvab 2294
Description: Rule used to change bound variables, using implicit substitution. (Contributed by Andrew Salmon, 11-Jul-2011.)
Hypotheses
Ref Expression
cbvab.1 𝑦𝜑
cbvab.2 𝑥𝜓
cbvab.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvab {𝑥𝜑} = {𝑦𝜓}

Proof of Theorem cbvab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvab.2 . . . . 5 𝑥𝜓
21nfsb 1939 . . . 4 𝑥[𝑧 / 𝑦]𝜓
3 cbvab.1 . . . . . 6 𝑦𝜑
4 cbvab.3 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜓))
54equcoms 1701 . . . . . . 7 (𝑦 = 𝑥 → (𝜑𝜓))
65bicomd 140 . . . . . 6 (𝑦 = 𝑥 → (𝜓𝜑))
73, 6sbie 1784 . . . . 5 ([𝑥 / 𝑦]𝜓𝜑)
8 sbequ 1833 . . . . 5 (𝑥 = 𝑧 → ([𝑥 / 𝑦]𝜓 ↔ [𝑧 / 𝑦]𝜓))
97, 8bitr3id 193 . . . 4 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜓))
102, 9sbie 1784 . . 3 ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)
11 df-clab 2157 . . 3 (𝑧 ∈ {𝑥𝜑} ↔ [𝑧 / 𝑥]𝜑)
12 df-clab 2157 . . 3 (𝑧 ∈ {𝑦𝜓} ↔ [𝑧 / 𝑦]𝜓)
1310, 11, 123bitr4i 211 . 2 (𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦𝜓})
1413eqriv 2167 1 {𝑥𝜑} = {𝑦𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wnf 1453  [wsb 1755  wcel 2141  {cab 2156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163
This theorem is referenced by:  cbvabv  2295  cbvrab  2728  cbvsbc  2983  cbvrabcsf  3114  dfdmf  4804  dfrnf  4852  funfvdm2f  5561  abrexex2g  6099  abrexex2  6103
  Copyright terms: Public domain W3C validator