| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvab | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by Andrew Salmon, 11-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| cbvab.1 | ⊢ Ⅎ𝑦𝜑 | 
| cbvab.2 | ⊢ Ⅎ𝑥𝜓 | 
| cbvab.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbvab | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvab.2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | nfsb 1965 | . . . 4 ⊢ Ⅎ𝑥[𝑧 / 𝑦]𝜓 | 
| 3 | cbvab.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvab.3 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | equcoms 1722 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | 
| 6 | 5 | bicomd 141 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) | 
| 7 | 3, 6 | sbie 1805 | . . . . 5 ⊢ ([𝑥 / 𝑦]𝜓 ↔ 𝜑) | 
| 8 | sbequ 1854 | . . . . 5 ⊢ (𝑥 = 𝑧 → ([𝑥 / 𝑦]𝜓 ↔ [𝑧 / 𝑦]𝜓)) | |
| 9 | 7, 8 | bitr3id 194 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜓)) | 
| 10 | 2, 9 | sbie 1805 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) | 
| 11 | df-clab 2183 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
| 12 | df-clab 2183 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
| 13 | 10, 11, 12 | 3bitr4i 212 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) | 
| 14 | 13 | eqriv 2193 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 Ⅎwnf 1474 [wsb 1776 ∈ wcel 2167 {cab 2182 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 | 
| This theorem is referenced by: cbvabv 2321 cbvrab 2761 cbvsbc 3018 cbvrabcsf 3150 dfdmf 4859 dfrnf 4907 funfvdm2f 5626 abrexex2g 6177 abrexex2 6181 | 
| Copyright terms: Public domain | W3C validator |