| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvab | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| cbvab.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvab.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvab.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvab | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvab.2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | nfsb 1977 | . . . 4 ⊢ Ⅎ𝑥[𝑧 / 𝑦]𝜓 |
| 3 | cbvab.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvab.3 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | equcoms 1734 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
| 6 | 5 | bicomd 141 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) |
| 7 | 3, 6 | sbie 1817 | . . . . 5 ⊢ ([𝑥 / 𝑦]𝜓 ↔ 𝜑) |
| 8 | sbequ 1866 | . . . . 5 ⊢ (𝑥 = 𝑧 → ([𝑥 / 𝑦]𝜓 ↔ [𝑧 / 𝑦]𝜓)) | |
| 9 | 7, 8 | bitr3id 194 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜓)) |
| 10 | 2, 9 | sbie 1817 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
| 11 | df-clab 2196 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
| 12 | df-clab 2196 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
| 13 | 10, 11, 12 | 3bitr4i 212 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
| 14 | 13 | eqriv 2206 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 Ⅎwnf 1486 [wsb 1788 ∈ wcel 2180 {cab 2195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 |
| This theorem is referenced by: cbvabv 2334 cbvrab 2777 cbvsbc 3037 cbvrabcsf 3170 dfdmf 4893 dfrnf 4941 funfvdm2f 5672 abrexex2g 6235 abrexex2 6239 |
| Copyright terms: Public domain | W3C validator |