| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvab | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| cbvab.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvab.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvab.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvab | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvab.2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | nfsb 1975 | . . . 4 ⊢ Ⅎ𝑥[𝑧 / 𝑦]𝜓 |
| 3 | cbvab.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 4 | cbvab.3 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | equcoms 1732 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
| 6 | 5 | bicomd 141 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) |
| 7 | 3, 6 | sbie 1815 | . . . . 5 ⊢ ([𝑥 / 𝑦]𝜓 ↔ 𝜑) |
| 8 | sbequ 1864 | . . . . 5 ⊢ (𝑥 = 𝑧 → ([𝑥 / 𝑦]𝜓 ↔ [𝑧 / 𝑦]𝜓)) | |
| 9 | 7, 8 | bitr3id 194 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜓)) |
| 10 | 2, 9 | sbie 1815 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
| 11 | df-clab 2193 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
| 12 | df-clab 2193 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
| 13 | 10, 11, 12 | 3bitr4i 212 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
| 14 | 13 | eqriv 2203 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 Ⅎwnf 1484 [wsb 1786 ∈ wcel 2177 {cab 2192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 |
| This theorem is referenced by: cbvabv 2331 cbvrab 2771 cbvsbc 3029 cbvrabcsf 3161 dfdmf 4877 dfrnf 4925 funfvdm2f 5654 abrexex2g 6215 abrexex2 6219 |
| Copyright terms: Public domain | W3C validator |