Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvab | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
cbvab.1 | ⊢ Ⅎ𝑦𝜑 |
cbvab.2 | ⊢ Ⅎ𝑥𝜓 |
cbvab.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvab | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvab.2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | nfsb 1944 | . . . 4 ⊢ Ⅎ𝑥[𝑧 / 𝑦]𝜓 |
3 | cbvab.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
4 | cbvab.3 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
5 | 4 | equcoms 1706 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
6 | 5 | bicomd 141 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) |
7 | 3, 6 | sbie 1789 | . . . . 5 ⊢ ([𝑥 / 𝑦]𝜓 ↔ 𝜑) |
8 | sbequ 1838 | . . . . 5 ⊢ (𝑥 = 𝑧 → ([𝑥 / 𝑦]𝜓 ↔ [𝑧 / 𝑦]𝜓)) | |
9 | 7, 8 | bitr3id 194 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜓)) |
10 | 2, 9 | sbie 1789 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
11 | df-clab 2162 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
12 | df-clab 2162 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
13 | 10, 11, 12 | 3bitr4i 212 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
14 | 13 | eqriv 2172 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 Ⅎwnf 1458 [wsb 1760 ∈ wcel 2146 {cab 2161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 |
This theorem is referenced by: cbvabv 2300 cbvrab 2733 cbvsbc 2989 cbvrabcsf 3120 dfdmf 4813 dfrnf 4861 funfvdm2f 5573 abrexex2g 6111 abrexex2 6115 |
Copyright terms: Public domain | W3C validator |