| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvcsbw | GIF version | ||
| Description: Version of cbvcsb 3129 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvcsbw.1 | ⊢ Ⅎ𝑦𝐶 |
| cbvcsbw.2 | ⊢ Ⅎ𝑥𝐷 |
| cbvcsbw.3 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvcsbw | ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvcsbw.1 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
| 2 | 1 | nfcri 2366 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐶 |
| 3 | cbvcsbw.2 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
| 4 | 3 | nfcri 2366 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐷 |
| 5 | cbvcsbw.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
| 6 | 5 | eleq2d 2299 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐶 ↔ 𝑧 ∈ 𝐷)) |
| 7 | 2, 4, 6 | cbvsbcw 3056 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐶 ↔ [𝐴 / 𝑦]𝑧 ∈ 𝐷) |
| 8 | 7 | abbii 2345 | . 2 ⊢ {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐶} = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐷} |
| 9 | df-csb 3125 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐶} | |
| 10 | df-csb 3125 | . 2 ⊢ ⦋𝐴 / 𝑦⦌𝐷 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐷} | |
| 11 | 8, 9, 10 | 3eqtr4i 2260 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 {cab 2215 Ⅎwnfc 2359 [wsbc 3028 ⦋csb 3124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-sbc 3029 df-csb 3125 |
| This theorem is referenced by: cbvprod 12055 |
| Copyright terms: Public domain | W3C validator |