ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsexv GIF version

Theorem ceqsexv 2811
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.)
Hypotheses
Ref Expression
ceqsexv.1 𝐴 ∈ V
ceqsexv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsexv (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsexv
StepHypRef Expression
1 nfv 1551 . 2 𝑥𝜓
2 ceqsexv.1 . 2 𝐴 ∈ V
3 ceqsexv.2 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3ceqsex 2810 1 (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1515  wcel 2176  Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774
This theorem is referenced by:  ceqsex3v  2815  gencbvex  2819  sbhypf  2822  euxfr2dc  2958  inuni  4200  eqvinop  4288  onm  4449  uniuni  4499  opeliunxp  4731  elvvv  4739  rexiunxp  4821  imai  5039  coi1  5199  abrexco  5830  opabex3d  6208  opabex3  6209  mapsnen  6905  xpsnen  6918  xpcomco  6923  xpassen  6927
  Copyright terms: Public domain W3C validator