ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsexv GIF version

Theorem ceqsexv 2802
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.)
Hypotheses
Ref Expression
ceqsexv.1 𝐴 ∈ V
ceqsexv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsexv (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsexv
StepHypRef Expression
1 nfv 1542 . 2 𝑥𝜓
2 ceqsexv.1 . 2 𝐴 ∈ V
3 ceqsexv.2 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3ceqsex 2801 1 (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765
This theorem is referenced by:  ceqsex3v  2806  gencbvex  2810  sbhypf  2813  euxfr2dc  2949  inuni  4189  eqvinop  4277  onm  4437  uniuni  4487  opeliunxp  4719  elvvv  4727  rexiunxp  4809  imai  5026  coi1  5186  abrexco  5809  opabex3d  6187  opabex3  6188  mapsnen  6879  xpsnen  6889  xpcomco  6894  xpassen  6898
  Copyright terms: Public domain W3C validator