ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsexv GIF version

Theorem ceqsexv 2769
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.)
Hypotheses
Ref Expression
ceqsexv.1 𝐴 ∈ V
ceqsexv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsexv (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsexv
StepHypRef Expression
1 nfv 1521 . 2 𝑥𝜓
2 ceqsexv.1 . 2 𝐴 ∈ V
3 ceqsexv.2 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3ceqsex 2768 1 (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732
This theorem is referenced by:  ceqsex3v  2772  gencbvex  2776  sbhypf  2779  euxfr2dc  2915  inuni  4141  eqvinop  4228  onm  4386  uniuni  4436  opeliunxp  4666  elvvv  4674  rexiunxp  4753  imai  4967  coi1  5126  abrexco  5738  opabex3d  6100  opabex3  6101  mapsnen  6789  xpsnen  6799  xpcomco  6804  xpassen  6808
  Copyright terms: Public domain W3C validator