| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > isseti | GIF version | ||
| Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| isseti.1 | ⊢ 𝐴 ∈ V | 
| Ref | Expression | 
|---|---|
| isseti | ⊢ ∃𝑥 𝑥 = 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | isset 2769 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: rexcom4b 2788 ceqsex 2801 ceqsexv2d 2803 vtoclf 2817 vtocl2 2819 vtocl3 2820 vtoclef 2837 eqvinc 2887 euind 2951 opabm 4315 eusv2nf 4491 dtruex 4595 limom 4650 isarep2 5345 dfoprab2 5969 rnoprab 6005 dmaddpq 7446 dmmulpq 7447 bj-inf2vnlem1 15616 | 
| Copyright terms: Public domain | W3C validator |