| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isseti | GIF version | ||
| Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| isseti.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | isset 2780 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 |
| This theorem is referenced by: rexcom4b 2799 ceqsex 2812 ceqsexv2d 2814 vtoclf 2828 vtocl2 2830 vtocl3 2831 vtoclef 2850 eqvinc 2900 euind 2964 opabm 4335 eusv2nf 4511 dtruex 4615 limom 4670 isarep2 5370 dfoprab2 6005 rnoprab 6041 dmaddpq 7512 dmmulpq 7513 bj-inf2vnlem1 16044 |
| Copyright terms: Public domain | W3C validator |