Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isseti | GIF version |
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
isseti.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | isset 2732 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: rexcom4b 2751 ceqsex 2764 vtoclf 2779 vtocl2 2781 vtocl3 2782 vtoclef 2799 eqvinc 2849 euind 2913 opabm 4258 eusv2nf 4434 dtruex 4536 limom 4591 isarep2 5275 dfoprab2 5889 rnoprab 5925 dmaddpq 7320 dmmulpq 7321 bj-inf2vnlem1 13862 |
Copyright terms: Public domain | W3C validator |