ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isseti GIF version

Theorem isseti 2782
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
isseti.1 𝐴 ∈ V
Assertion
Ref Expression
isseti 𝑥 𝑥 = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem isseti
StepHypRef Expression
1 isseti.1 . 2 𝐴 ∈ V
2 isset 2780 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
31, 2mpbi 145 1 𝑥 𝑥 = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wex 1516  wcel 2177  Vcvv 2773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-v 2775
This theorem is referenced by:  rexcom4b  2799  ceqsex  2812  ceqsexv2d  2814  vtoclf  2828  vtocl2  2830  vtocl3  2831  vtoclef  2850  eqvinc  2900  euind  2964  opabm  4335  eusv2nf  4511  dtruex  4615  limom  4670  isarep2  5370  dfoprab2  6005  rnoprab  6041  dmaddpq  7512  dmmulpq  7513  bj-inf2vnlem1  16044
  Copyright terms: Public domain W3C validator