| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isseti | GIF version | ||
| Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| isseti.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | isset 2806 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: rexcom4b 2825 ceqsex 2838 ceqsexv2d 2840 vtoclf 2854 vtocl2 2856 vtocl3 2857 vtoclef 2876 eqvinc 2926 euind 2990 opabm 4368 eusv2nf 4546 dtruex 4650 limom 4705 isarep2 5407 dfoprab2 6050 rnoprab 6086 dmaddpq 7562 dmmulpq 7563 bj-inf2vnlem1 16291 |
| Copyright terms: Public domain | W3C validator |