| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isseti | GIF version | ||
| Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| isseti.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | isset 2777 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∃wex 1514 ∈ wcel 2175 Vcvv 2771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: rexcom4b 2796 ceqsex 2809 ceqsexv2d 2811 vtoclf 2825 vtocl2 2827 vtocl3 2828 vtoclef 2845 eqvinc 2895 euind 2959 opabm 4326 eusv2nf 4502 dtruex 4606 limom 4661 isarep2 5360 dfoprab2 5991 rnoprab 6027 dmaddpq 7491 dmmulpq 7492 bj-inf2vnlem1 15839 |
| Copyright terms: Public domain | W3C validator |