![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isseti | GIF version |
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
isseti.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | isset 2647 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1299 ∃wex 1436 ∈ wcel 1448 Vcvv 2641 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-v 2643 |
This theorem is referenced by: rexcom4b 2666 ceqsex 2679 vtoclf 2694 vtocl2 2696 vtocl3 2697 vtoclef 2714 eqvinc 2762 euind 2824 opabm 4140 eusv2nf 4315 dtruex 4412 limom 4465 isarep2 5146 dfoprab2 5750 rnoprab 5786 dmaddpq 7088 dmmulpq 7089 bj-inf2vnlem1 12753 |
Copyright terms: Public domain | W3C validator |