ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom2lem GIF version

Theorem dom2lem 6766
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.)
Hypotheses
Ref Expression
dom2d.1 (𝜑 → (𝑥𝐴𝐶𝐵))
dom2d.2 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
Assertion
Ref Expression
dom2lem (𝜑 → (𝑥𝐴𝐶):𝐴1-1𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem dom2lem
StepHypRef Expression
1 dom2d.1 . . . 4 (𝜑 → (𝑥𝐴𝐶𝐵))
21ralrimiv 2549 . . 3 (𝜑 → ∀𝑥𝐴 𝐶𝐵)
3 eqid 2177 . . . 4 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
43fmpt 5662 . . 3 (∀𝑥𝐴 𝐶𝐵 ↔ (𝑥𝐴𝐶):𝐴𝐵)
52, 4sylib 122 . 2 (𝜑 → (𝑥𝐴𝐶):𝐴𝐵)
61imp 124 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶𝐵)
73fvmpt2 5595 . . . . . . . 8 ((𝑥𝐴𝐶𝐵) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
87adantll 476 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝐶𝐵) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
96, 8mpdan 421 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
109adantrr 479 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
11 nfv 1528 . . . . . . . 8 𝑥(𝜑𝑦𝐴)
12 nffvmpt1 5522 . . . . . . . . 9 𝑥((𝑥𝐴𝐶)‘𝑦)
1312nfeq1 2329 . . . . . . . 8 𝑥((𝑥𝐴𝐶)‘𝑦) = 𝐷
1411, 13nfim 1572 . . . . . . 7 𝑥((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)
15 eleq1 2240 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1615anbi2d 464 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
1716imbi1d 231 . . . . . . . 8 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶) ↔ ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)))
1815anbi1d 465 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥𝐴𝑦𝐴) ↔ (𝑦𝐴𝑦𝐴)))
19 anidm 396 . . . . . . . . . . . 12 ((𝑦𝐴𝑦𝐴) ↔ 𝑦𝐴)
2018, 19bitrdi 196 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑥𝐴𝑦𝐴) ↔ 𝑦𝐴))
2120anbi2d 464 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ↔ (𝜑𝑦𝐴)))
22 fveq2 5511 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦))
2322adantr 276 . . . . . . . . . . . 12 ((𝑥 = 𝑦 ∧ (𝜑 ∧ (𝑥𝐴𝑦𝐴))) → ((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦))
24 dom2d.2 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
2524imp 124 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝐶 = 𝐷𝑥 = 𝑦))
2625biimparc 299 . . . . . . . . . . . 12 ((𝑥 = 𝑦 ∧ (𝜑 ∧ (𝑥𝐴𝑦𝐴))) → 𝐶 = 𝐷)
2723, 26eqeq12d 2192 . . . . . . . . . . 11 ((𝑥 = 𝑦 ∧ (𝜑 ∧ (𝑥𝐴𝑦𝐴))) → (((𝑥𝐴𝐶)‘𝑥) = 𝐶 ↔ ((𝑥𝐴𝐶)‘𝑦) = 𝐷))
2827ex 115 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (((𝑥𝐴𝐶)‘𝑥) = 𝐶 ↔ ((𝑥𝐴𝐶)‘𝑦) = 𝐷)))
2921, 28sylbird 170 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝜑𝑦𝐴) → (((𝑥𝐴𝐶)‘𝑥) = 𝐶 ↔ ((𝑥𝐴𝐶)‘𝑦) = 𝐷)))
3029pm5.74d 182 . . . . . . . 8 (𝑥 = 𝑦 → (((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶) ↔ ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)))
3117, 30bitrd 188 . . . . . . 7 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶) ↔ ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)))
3214, 31, 9chvar 1757 . . . . . 6 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)
3332adantrl 478 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)
3410, 33eqeq12d 2192 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦) ↔ 𝐶 = 𝐷))
3525biimpd 144 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝐶 = 𝐷𝑥 = 𝑦))
3634, 35sylbid 150 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦) → 𝑥 = 𝑦))
3736ralrimivva 2559 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴 (((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦) → 𝑥 = 𝑦))
38 nfmpt1 4093 . . 3 𝑥(𝑥𝐴𝐶)
39 nfcv 2319 . . 3 𝑦(𝑥𝐴𝐶)
4038, 39dff13f 5765 . 2 ((𝑥𝐴𝐶):𝐴1-1𝐵 ↔ ((𝑥𝐴𝐶):𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦) → 𝑥 = 𝑦)))
415, 37, 40sylanbrc 417 1 (𝜑 → (𝑥𝐴𝐶):𝐴1-1𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  cmpt 4061  wf 5208  1-1wf1 5209  cfv 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fv 5220
This theorem is referenced by:  dom2d  6767  dom3d  6768
  Copyright terms: Public domain W3C validator