Proof of Theorem dom2lem
Step | Hyp | Ref
| Expression |
1 | | dom2d.1 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
2 | 1 | ralrimiv 2538 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) |
3 | | eqid 2165 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
4 | 3 | fmpt 5635 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) |
5 | 2, 4 | sylib 121 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) |
6 | 1 | imp 123 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
7 | 3 | fvmpt2 5569 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) |
8 | 7 | adantll 468 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) |
9 | 6, 8 | mpdan 418 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) |
10 | 9 | adantrr 471 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) |
11 | | nfv 1516 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝐴) |
12 | | nffvmpt1 5497 |
. . . . . . . . 9
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) |
13 | 12 | nfeq1 2318 |
. . . . . . . 8
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = 𝐷 |
14 | 11, 13 | nfim 1560 |
. . . . . . 7
⊢
Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = 𝐷) |
15 | | eleq1 2229 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
16 | 15 | anbi2d 460 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴))) |
17 | 16 | imbi1d 230 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶))) |
18 | 15 | anbi1d 461 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴))) |
19 | | anidm 394 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ↔ 𝑦 ∈ 𝐴) |
20 | 18, 19 | bitrdi 195 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ↔ 𝑦 ∈ 𝐴)) |
21 | 20 | anbi2d 460 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴))) |
22 | | fveq2 5486 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦)) |
23 | 22 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑦 ∧ (𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴))) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦)) |
24 | | dom2d.2 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) |
25 | 24 | imp 123 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦)) |
26 | 25 | biimparc 297 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑦 ∧ (𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴))) → 𝐶 = 𝐷) |
27 | 23, 26 | eqeq12d 2180 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑦 ∧ (𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴))) → (((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = 𝐷)) |
28 | 27 | ex 114 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = 𝐷))) |
29 | 21, 28 | sylbird 169 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = 𝐷))) |
30 | 29 | pm5.74d 181 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = 𝐷))) |
31 | 17, 30 | bitrd 187 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = 𝐷))) |
32 | 14, 31, 9 | chvar 1745 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = 𝐷) |
33 | 32 | adantrl 470 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = 𝐷) |
34 | 10, 33 | eqeq12d 2180 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) ↔ 𝐶 = 𝐷)) |
35 | 25 | biimpd 143 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
36 | 34, 35 | sylbid 149 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) → 𝑥 = 𝑦)) |
37 | 36 | ralrimivva 2548 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) → 𝑥 = 𝑦)) |
38 | | nfmpt1 4075 |
. . 3
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐶) |
39 | | nfcv 2308 |
. . 3
⊢
Ⅎ𝑦(𝑥 ∈ 𝐴 ↦ 𝐶) |
40 | 38, 39 | dff13f 5738 |
. 2
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) → 𝑥 = 𝑦))) |
41 | 5, 37, 40 | sylanbrc 414 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵) |