ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom2lem GIF version

Theorem dom2lem 6826
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.)
Hypotheses
Ref Expression
dom2d.1 (𝜑 → (𝑥𝐴𝐶𝐵))
dom2d.2 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
Assertion
Ref Expression
dom2lem (𝜑 → (𝑥𝐴𝐶):𝐴1-1𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem dom2lem
StepHypRef Expression
1 dom2d.1 . . . 4 (𝜑 → (𝑥𝐴𝐶𝐵))
21ralrimiv 2566 . . 3 (𝜑 → ∀𝑥𝐴 𝐶𝐵)
3 eqid 2193 . . . 4 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
43fmpt 5708 . . 3 (∀𝑥𝐴 𝐶𝐵 ↔ (𝑥𝐴𝐶):𝐴𝐵)
52, 4sylib 122 . 2 (𝜑 → (𝑥𝐴𝐶):𝐴𝐵)
61imp 124 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶𝐵)
73fvmpt2 5641 . . . . . . . 8 ((𝑥𝐴𝐶𝐵) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
87adantll 476 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝐶𝐵) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
96, 8mpdan 421 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
109adantrr 479 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
11 nfv 1539 . . . . . . . 8 𝑥(𝜑𝑦𝐴)
12 nffvmpt1 5565 . . . . . . . . 9 𝑥((𝑥𝐴𝐶)‘𝑦)
1312nfeq1 2346 . . . . . . . 8 𝑥((𝑥𝐴𝐶)‘𝑦) = 𝐷
1411, 13nfim 1583 . . . . . . 7 𝑥((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)
15 eleq1 2256 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1615anbi2d 464 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
1716imbi1d 231 . . . . . . . 8 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶) ↔ ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)))
1815anbi1d 465 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥𝐴𝑦𝐴) ↔ (𝑦𝐴𝑦𝐴)))
19 anidm 396 . . . . . . . . . . . 12 ((𝑦𝐴𝑦𝐴) ↔ 𝑦𝐴)
2018, 19bitrdi 196 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑥𝐴𝑦𝐴) ↔ 𝑦𝐴))
2120anbi2d 464 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ↔ (𝜑𝑦𝐴)))
22 fveq2 5554 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦))
2322adantr 276 . . . . . . . . . . . 12 ((𝑥 = 𝑦 ∧ (𝜑 ∧ (𝑥𝐴𝑦𝐴))) → ((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦))
24 dom2d.2 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
2524imp 124 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝐶 = 𝐷𝑥 = 𝑦))
2625biimparc 299 . . . . . . . . . . . 12 ((𝑥 = 𝑦 ∧ (𝜑 ∧ (𝑥𝐴𝑦𝐴))) → 𝐶 = 𝐷)
2723, 26eqeq12d 2208 . . . . . . . . . . 11 ((𝑥 = 𝑦 ∧ (𝜑 ∧ (𝑥𝐴𝑦𝐴))) → (((𝑥𝐴𝐶)‘𝑥) = 𝐶 ↔ ((𝑥𝐴𝐶)‘𝑦) = 𝐷))
2827ex 115 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (((𝑥𝐴𝐶)‘𝑥) = 𝐶 ↔ ((𝑥𝐴𝐶)‘𝑦) = 𝐷)))
2921, 28sylbird 170 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝜑𝑦𝐴) → (((𝑥𝐴𝐶)‘𝑥) = 𝐶 ↔ ((𝑥𝐴𝐶)‘𝑦) = 𝐷)))
3029pm5.74d 182 . . . . . . . 8 (𝑥 = 𝑦 → (((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶) ↔ ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)))
3117, 30bitrd 188 . . . . . . 7 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶) ↔ ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)))
3214, 31, 9chvar 1768 . . . . . 6 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)
3332adantrl 478 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)
3410, 33eqeq12d 2208 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦) ↔ 𝐶 = 𝐷))
3525biimpd 144 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝐶 = 𝐷𝑥 = 𝑦))
3634, 35sylbid 150 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦) → 𝑥 = 𝑦))
3736ralrimivva 2576 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴 (((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦) → 𝑥 = 𝑦))
38 nfmpt1 4122 . . 3 𝑥(𝑥𝐴𝐶)
39 nfcv 2336 . . 3 𝑦(𝑥𝐴𝐶)
4038, 39dff13f 5813 . 2 ((𝑥𝐴𝐶):𝐴1-1𝐵 ↔ ((𝑥𝐴𝐶):𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦) → 𝑥 = 𝑦)))
415, 37, 40sylanbrc 417 1 (𝜑 → (𝑥𝐴𝐶):𝐴1-1𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  cmpt 4090  wf 5250  1-1wf1 5251  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fv 5262
This theorem is referenced by:  dom2d  6827  dom3d  6828  4sqlem11  12539
  Copyright terms: Public domain W3C validator