![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > findes | GIF version |
Description: Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.) |
Ref | Expression |
---|---|
findes.1 | ⊢ [∅ / 𝑥]𝜑 |
findes.2 | ⊢ (𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) |
Ref | Expression |
---|---|
findes | ⊢ (𝑥 ∈ ω → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 2967 | . 2 ⊢ (𝑧 = ∅ → ([𝑧 / 𝑥]𝜑 ↔ [∅ / 𝑥]𝜑)) | |
2 | sbequ 1840 | . 2 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
3 | dfsbcq2 2967 | . 2 ⊢ (𝑧 = suc 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) | |
4 | sbequ12r 1772 | . 2 ⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝜑 ↔ 𝜑)) | |
5 | findes.1 | . 2 ⊢ [∅ / 𝑥]𝜑 | |
6 | nfv 1528 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ ω | |
7 | nfs1v 1939 | . . . . 5 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
8 | nfsbc1v 2983 | . . . . 5 ⊢ Ⅎ𝑥[suc 𝑦 / 𝑥]𝜑 | |
9 | 7, 8 | nfim 1572 | . . . 4 ⊢ Ⅎ𝑥([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑) |
10 | 6, 9 | nfim 1572 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)) |
11 | eleq1 2240 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ ω ↔ 𝑦 ∈ ω)) | |
12 | sbequ12 1771 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
13 | suceq 4404 | . . . . . 6 ⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) | |
14 | dfsbcq 2966 | . . . . . 6 ⊢ (suc 𝑥 = suc 𝑦 → ([suc 𝑥 / 𝑥]𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) | |
15 | 13, 14 | syl 14 | . . . . 5 ⊢ (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) |
16 | 12, 15 | imbi12d 234 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜑 → [suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑))) |
17 | 11, 16 | imbi12d 234 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) ↔ (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)))) |
18 | findes.2 | . . 3 ⊢ (𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) | |
19 | 10, 17, 18 | chvar 1757 | . 2 ⊢ (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)) |
20 | 1, 2, 3, 4, 5, 19 | finds 4601 | 1 ⊢ (𝑥 ∈ ω → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 [wsb 1762 ∈ wcel 2148 [wsbc 2964 ∅c0 3424 suc csuc 4367 ωcom 4591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 df-suc 4373 df-iom 4592 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |