| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > findes | GIF version | ||
| Description: Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.) |
| Ref | Expression |
|---|---|
| findes.1 | ⊢ [∅ / 𝑥]𝜑 |
| findes.2 | ⊢ (𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) |
| Ref | Expression |
|---|---|
| findes | ⊢ (𝑥 ∈ ω → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3003 | . 2 ⊢ (𝑧 = ∅ → ([𝑧 / 𝑥]𝜑 ↔ [∅ / 𝑥]𝜑)) | |
| 2 | sbequ 1864 | . 2 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 3 | dfsbcq2 3003 | . 2 ⊢ (𝑧 = suc 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) | |
| 4 | sbequ12r 1796 | . 2 ⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝜑 ↔ 𝜑)) | |
| 5 | findes.1 | . 2 ⊢ [∅ / 𝑥]𝜑 | |
| 6 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ ω | |
| 7 | nfs1v 1968 | . . . . 5 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
| 8 | nfsbc1v 3019 | . . . . 5 ⊢ Ⅎ𝑥[suc 𝑦 / 𝑥]𝜑 | |
| 9 | 7, 8 | nfim 1596 | . . . 4 ⊢ Ⅎ𝑥([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑) |
| 10 | 6, 9 | nfim 1596 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)) |
| 11 | eleq1 2269 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ ω ↔ 𝑦 ∈ ω)) | |
| 12 | sbequ12 1795 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 13 | suceq 4454 | . . . . . 6 ⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) | |
| 14 | dfsbcq 3002 | . . . . . 6 ⊢ (suc 𝑥 = suc 𝑦 → ([suc 𝑥 / 𝑥]𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) | |
| 15 | 13, 14 | syl 14 | . . . . 5 ⊢ (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) |
| 16 | 12, 15 | imbi12d 234 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜑 → [suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑))) |
| 17 | 11, 16 | imbi12d 234 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) ↔ (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)))) |
| 18 | findes.2 | . . 3 ⊢ (𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) | |
| 19 | 10, 17, 18 | chvar 1781 | . 2 ⊢ (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)) |
| 20 | 1, 2, 3, 4, 5, 19 | finds 4653 | 1 ⊢ (𝑥 ∈ ω → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 [wsb 1786 ∈ wcel 2177 [wsbc 3000 ∅c0 3462 suc csuc 4417 ωcom 4643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-uni 3854 df-int 3889 df-suc 4423 df-iom 4644 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |