ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  findes GIF version

Theorem findes 4639
Description: Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.)
Hypotheses
Ref Expression
findes.1 [∅ / 𝑥]𝜑
findes.2 (𝑥 ∈ ω → (𝜑[suc 𝑥 / 𝑥]𝜑))
Assertion
Ref Expression
findes (𝑥 ∈ ω → 𝜑)

Proof of Theorem findes
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2992 . 2 (𝑧 = ∅ → ([𝑧 / 𝑥]𝜑[∅ / 𝑥]𝜑))
2 sbequ 1854 . 2 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
3 dfsbcq2 2992 . 2 (𝑧 = suc 𝑦 → ([𝑧 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
4 sbequ12r 1786 . 2 (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝜑𝜑))
5 findes.1 . 2 [∅ / 𝑥]𝜑
6 nfv 1542 . . . 4 𝑥 𝑦 ∈ ω
7 nfs1v 1958 . . . . 5 𝑥[𝑦 / 𝑥]𝜑
8 nfsbc1v 3008 . . . . 5 𝑥[suc 𝑦 / 𝑥]𝜑
97, 8nfim 1586 . . . 4 𝑥([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)
106, 9nfim 1586 . . 3 𝑥(𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
11 eleq1 2259 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ ω ↔ 𝑦 ∈ ω))
12 sbequ12 1785 . . . . 5 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
13 suceq 4437 . . . . . 6 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
14 dfsbcq 2991 . . . . . 6 (suc 𝑥 = suc 𝑦 → ([suc 𝑥 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
1513, 14syl 14 . . . . 5 (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
1612, 15imbi12d 234 . . . 4 (𝑥 = 𝑦 → ((𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)))
1711, 16imbi12d 234 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ ω → (𝜑[suc 𝑥 / 𝑥]𝜑)) ↔ (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))))
18 findes.2 . . 3 (𝑥 ∈ ω → (𝜑[suc 𝑥 / 𝑥]𝜑))
1910, 17, 18chvar 1771 . 2 (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
201, 2, 3, 4, 5, 19finds 4636 1 (𝑥 ∈ ω → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  [wsb 1776  wcel 2167  [wsbc 2989  c0 3450  suc csuc 4400  ωcom 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-suc 4406  df-iom 4627
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator