Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > findes | GIF version |
Description: Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.) |
Ref | Expression |
---|---|
findes.1 | ⊢ [∅ / 𝑥]𝜑 |
findes.2 | ⊢ (𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) |
Ref | Expression |
---|---|
findes | ⊢ (𝑥 ∈ ω → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 2958 | . 2 ⊢ (𝑧 = ∅ → ([𝑧 / 𝑥]𝜑 ↔ [∅ / 𝑥]𝜑)) | |
2 | sbequ 1833 | . 2 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
3 | dfsbcq2 2958 | . 2 ⊢ (𝑧 = suc 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) | |
4 | sbequ12r 1765 | . 2 ⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝜑 ↔ 𝜑)) | |
5 | findes.1 | . 2 ⊢ [∅ / 𝑥]𝜑 | |
6 | nfv 1521 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ ω | |
7 | nfs1v 1932 | . . . . 5 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
8 | nfsbc1v 2973 | . . . . 5 ⊢ Ⅎ𝑥[suc 𝑦 / 𝑥]𝜑 | |
9 | 7, 8 | nfim 1565 | . . . 4 ⊢ Ⅎ𝑥([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑) |
10 | 6, 9 | nfim 1565 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)) |
11 | eleq1 2233 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ ω ↔ 𝑦 ∈ ω)) | |
12 | sbequ12 1764 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
13 | suceq 4387 | . . . . . 6 ⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) | |
14 | dfsbcq 2957 | . . . . . 6 ⊢ (suc 𝑥 = suc 𝑦 → ([suc 𝑥 / 𝑥]𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) | |
15 | 13, 14 | syl 14 | . . . . 5 ⊢ (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) |
16 | 12, 15 | imbi12d 233 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜑 → [suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑))) |
17 | 11, 16 | imbi12d 233 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) ↔ (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)))) |
18 | findes.2 | . . 3 ⊢ (𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) | |
19 | 10, 17, 18 | chvar 1750 | . 2 ⊢ (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)) |
20 | 1, 2, 3, 4, 5, 19 | finds 4584 | 1 ⊢ (𝑥 ∈ ω → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 [wsb 1755 ∈ wcel 2141 [wsbc 2955 ∅c0 3414 suc csuc 4350 ωcom 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |