ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  findes GIF version

Theorem findes 4574
Description: Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.)
Hypotheses
Ref Expression
findes.1 [∅ / 𝑥]𝜑
findes.2 (𝑥 ∈ ω → (𝜑[suc 𝑥 / 𝑥]𝜑))
Assertion
Ref Expression
findes (𝑥 ∈ ω → 𝜑)

Proof of Theorem findes
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2949 . 2 (𝑧 = ∅ → ([𝑧 / 𝑥]𝜑[∅ / 𝑥]𝜑))
2 sbequ 1827 . 2 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
3 dfsbcq2 2949 . 2 (𝑧 = suc 𝑦 → ([𝑧 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
4 sbequ12r 1759 . 2 (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝜑𝜑))
5 findes.1 . 2 [∅ / 𝑥]𝜑
6 nfv 1515 . . . 4 𝑥 𝑦 ∈ ω
7 nfs1v 1926 . . . . 5 𝑥[𝑦 / 𝑥]𝜑
8 nfsbc1v 2964 . . . . 5 𝑥[suc 𝑦 / 𝑥]𝜑
97, 8nfim 1559 . . . 4 𝑥([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)
106, 9nfim 1559 . . 3 𝑥(𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
11 eleq1 2227 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ ω ↔ 𝑦 ∈ ω))
12 sbequ12 1758 . . . . 5 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
13 suceq 4374 . . . . . 6 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
14 dfsbcq 2948 . . . . . 6 (suc 𝑥 = suc 𝑦 → ([suc 𝑥 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
1513, 14syl 14 . . . . 5 (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
1612, 15imbi12d 233 . . . 4 (𝑥 = 𝑦 → ((𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)))
1711, 16imbi12d 233 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ ω → (𝜑[suc 𝑥 / 𝑥]𝜑)) ↔ (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))))
18 findes.2 . . 3 (𝑥 ∈ ω → (𝜑[suc 𝑥 / 𝑥]𝜑))
1910, 17, 18chvar 1744 . 2 (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
201, 2, 3, 4, 5, 19finds 4571 1 (𝑥 ∈ ω → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1342  [wsb 1749  wcel 2135  [wsbc 2946  c0 3404  suc csuc 4337  ωcom 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-uni 3784  df-int 3819  df-suc 4343  df-iom 4562
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator