![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > findes | GIF version |
Description: Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.) |
Ref | Expression |
---|---|
findes.1 | ⊢ [∅ / 𝑥]𝜑 |
findes.2 | ⊢ (𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) |
Ref | Expression |
---|---|
findes | ⊢ (𝑥 ∈ ω → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 2988 | . 2 ⊢ (𝑧 = ∅ → ([𝑧 / 𝑥]𝜑 ↔ [∅ / 𝑥]𝜑)) | |
2 | sbequ 1851 | . 2 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
3 | dfsbcq2 2988 | . 2 ⊢ (𝑧 = suc 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) | |
4 | sbequ12r 1783 | . 2 ⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝜑 ↔ 𝜑)) | |
5 | findes.1 | . 2 ⊢ [∅ / 𝑥]𝜑 | |
6 | nfv 1539 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ ω | |
7 | nfs1v 1955 | . . . . 5 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
8 | nfsbc1v 3004 | . . . . 5 ⊢ Ⅎ𝑥[suc 𝑦 / 𝑥]𝜑 | |
9 | 7, 8 | nfim 1583 | . . . 4 ⊢ Ⅎ𝑥([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑) |
10 | 6, 9 | nfim 1583 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)) |
11 | eleq1 2256 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ ω ↔ 𝑦 ∈ ω)) | |
12 | sbequ12 1782 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
13 | suceq 4433 | . . . . . 6 ⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) | |
14 | dfsbcq 2987 | . . . . . 6 ⊢ (suc 𝑥 = suc 𝑦 → ([suc 𝑥 / 𝑥]𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) | |
15 | 13, 14 | syl 14 | . . . . 5 ⊢ (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) |
16 | 12, 15 | imbi12d 234 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜑 → [suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑))) |
17 | 11, 16 | imbi12d 234 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) ↔ (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)))) |
18 | findes.2 | . . 3 ⊢ (𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) | |
19 | 10, 17, 18 | chvar 1768 | . 2 ⊢ (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)) |
20 | 1, 2, 3, 4, 5, 19 | finds 4632 | 1 ⊢ (𝑥 ∈ ω → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 [wsb 1773 ∈ wcel 2164 [wsbc 2985 ∅c0 3446 suc csuc 4396 ωcom 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-suc 4402 df-iom 4623 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |