| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbhypf | GIF version | ||
| Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 2823 for class substitution version. (Contributed by NM, 19-Dec-2008.) |
| Ref | Expression |
|---|---|
| csbhypf.1 | ⊢ Ⅎ𝑥𝐴 |
| csbhypf.2 | ⊢ Ⅎ𝑥𝐶 |
| csbhypf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbhypf | ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbhypf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfeq2 2361 | . . 3 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
| 3 | nfcsb1v 3127 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 4 | csbhypf.2 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
| 5 | 3, 4 | nfeq 2357 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 = 𝐶 |
| 6 | 2, 5 | nfim 1596 | . 2 ⊢ Ⅎ𝑥(𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
| 7 | eqeq1 2213 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
| 8 | csbeq1a 3103 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 9 | 8 | eqeq1d 2215 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐵 = 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 = 𝐶)) |
| 10 | 7, 9 | imbi12d 234 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶))) |
| 11 | csbhypf.3 | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 12 | 6, 10, 11 | chvar 1781 | 1 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 Ⅎwnfc 2336 ⦋csb 3094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-sbc 3000 df-csb 3095 |
| This theorem is referenced by: disji2 4039 tfisi 4639 |
| Copyright terms: Public domain | W3C validator |