![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbhypf | GIF version |
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 2809 for class substitution version. (Contributed by NM, 19-Dec-2008.) |
Ref | Expression |
---|---|
csbhypf.1 | ⊢ Ⅎ𝑥𝐴 |
csbhypf.2 | ⊢ Ⅎ𝑥𝐶 |
csbhypf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbhypf | ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbhypf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfeq2 2348 | . . 3 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
3 | nfcsb1v 3113 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
4 | csbhypf.2 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
5 | 3, 4 | nfeq 2344 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 = 𝐶 |
6 | 2, 5 | nfim 1583 | . 2 ⊢ Ⅎ𝑥(𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
7 | eqeq1 2200 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
8 | csbeq1a 3089 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
9 | 8 | eqeq1d 2202 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐵 = 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 = 𝐶)) |
10 | 7, 9 | imbi12d 234 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶))) |
11 | csbhypf.3 | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
12 | 6, 10, 11 | chvar 1768 | 1 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 Ⅎwnfc 2323 ⦋csb 3080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-sbc 2986 df-csb 3081 |
This theorem is referenced by: disji2 4022 tfisi 4619 |
Copyright terms: Public domain | W3C validator |