| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 5561 |
. . . . . 6
⊢ (𝑦 = 𝐷 → (𝐹‘𝑦) = (𝐹‘𝐷)) |
| 2 | 1 | sseq1d 3213 |
. . . . 5
⊢ (𝑦 = 𝐷 → ((𝐹‘𝑦) ⊆ 𝐶 ↔ (𝐹‘𝐷) ⊆ 𝐶)) |
| 3 | 2 | imbi2d 230 |
. . . 4
⊢ (𝑦 = 𝐷 → ((∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑦) ⊆ 𝐶) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝐷) ⊆ 𝐶))) |
| 4 | | nfrab1 2677 |
. . . . . . 7
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 5 | 4 | nfcri 2333 |
. . . . . 6
⊢
Ⅎ𝑥 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 6 | | nfra1 2528 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |
| 7 | | fvmpt2.1 |
. . . . . . . . . 10
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 8 | | nfmpt1 4127 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
| 9 | 7, 8 | nfcxfr 2336 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐹 |
| 10 | | nfcv 2339 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑦 |
| 11 | 9, 10 | nffv 5571 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝐹‘𝑦) |
| 12 | | nfcv 2339 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐶 |
| 13 | 11, 12 | nfss 3177 |
. . . . . . 7
⊢
Ⅎ𝑥(𝐹‘𝑦) ⊆ 𝐶 |
| 14 | 6, 13 | nfim 1586 |
. . . . . 6
⊢
Ⅎ𝑥(∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑦) ⊆ 𝐶) |
| 15 | 5, 14 | nfim 1586 |
. . . . 5
⊢
Ⅎ𝑥(𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑦) ⊆ 𝐶)) |
| 16 | | eleq1 2259 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V})) |
| 17 | | fveq2 5561 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 18 | 17 | sseq1d 3213 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) ⊆ 𝐶 ↔ (𝐹‘𝑦) ⊆ 𝐶)) |
| 19 | 18 | imbi2d 230 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑥) ⊆ 𝐶) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑦) ⊆ 𝐶))) |
| 20 | 16, 19 | imbi12d 234 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑥) ⊆ 𝐶)) ↔ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑦) ⊆ 𝐶)))) |
| 21 | 7 | dmmpt 5166 |
. . . . . . 7
⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 22 | 21 | eleq2i 2263 |
. . . . . 6
⊢ (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) |
| 23 | 21 | rabeq2i 2760 |
. . . . . . . . . 10
⊢ (𝑥 ∈ dom 𝐹 ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)) |
| 24 | 7 | fvmpt2 5648 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V) → (𝐹‘𝑥) = 𝐵) |
| 25 | | eqimss 3238 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑥) = 𝐵 → (𝐹‘𝑥) ⊆ 𝐵) |
| 26 | 24, 25 | syl 14 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V) → (𝐹‘𝑥) ⊆ 𝐵) |
| 27 | 23, 26 | sylbi 121 |
. . . . . . . . 9
⊢ (𝑥 ∈ dom 𝐹 → (𝐹‘𝑥) ⊆ 𝐵) |
| 28 | 27 | adantr 276 |
. . . . . . . 8
⊢ ((𝑥 ∈ dom 𝐹 ∧ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) → (𝐹‘𝑥) ⊆ 𝐵) |
| 29 | 7 | dmmptss 5167 |
. . . . . . . . . 10
⊢ dom 𝐹 ⊆ 𝐴 |
| 30 | 29 | sseli 3180 |
. . . . . . . . 9
⊢ (𝑥 ∈ dom 𝐹 → 𝑥 ∈ 𝐴) |
| 31 | | rsp 2544 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 𝐵 ⊆ 𝐶 → (𝑥 ∈ 𝐴 → 𝐵 ⊆ 𝐶)) |
| 32 | 30, 31 | mpan9 281 |
. . . . . . . 8
⊢ ((𝑥 ∈ dom 𝐹 ∧ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) → 𝐵 ⊆ 𝐶) |
| 33 | 28, 32 | sstrd 3194 |
. . . . . . 7
⊢ ((𝑥 ∈ dom 𝐹 ∧ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) → (𝐹‘𝑥) ⊆ 𝐶) |
| 34 | 33 | ex 115 |
. . . . . 6
⊢ (𝑥 ∈ dom 𝐹 → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑥) ⊆ 𝐶)) |
| 35 | 22, 34 | sylbir 135 |
. . . . 5
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑥) ⊆ 𝐶)) |
| 36 | 15, 20, 35 | chvar 1771 |
. . . 4
⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑦) ⊆ 𝐶)) |
| 37 | 3, 36 | vtoclga 2830 |
. . 3
⊢ (𝐷 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝐷) ⊆ 𝐶)) |
| 38 | 37, 21 | eleq2s 2291 |
. 2
⊢ (𝐷 ∈ dom 𝐹 → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝐷) ⊆ 𝐶)) |
| 39 | 38 | imp 124 |
1
⊢ ((𝐷 ∈ dom 𝐹 ∧ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) → (𝐹‘𝐷) ⊆ 𝐶) |