ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptssdm GIF version

Theorem fvmptssdm 5330
Description: If all the values of the mapping are subsets of a class 𝐶, then so is any evaluation of the mapping at a value in the domain of the mapping. (Contributed by Jim Kingdon, 3-Jan-2018.)
Hypothesis
Ref Expression
fvmpt2.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmptssdm ((𝐷 ∈ dom 𝐹 ∧ ∀𝑥𝐴 𝐵𝐶) → (𝐹𝐷) ⊆ 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝐹(𝑥)

Proof of Theorem fvmptssdm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5251 . . . . . 6 (𝑦 = 𝐷 → (𝐹𝑦) = (𝐹𝐷))
21sseq1d 3037 . . . . 5 (𝑦 = 𝐷 → ((𝐹𝑦) ⊆ 𝐶 ↔ (𝐹𝐷) ⊆ 𝐶))
32imbi2d 228 . . . 4 (𝑦 = 𝐷 → ((∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶) ↔ (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶)))
4 nfrab1 2539 . . . . . . 7 𝑥{𝑥𝐴𝐵 ∈ V}
54nfcri 2217 . . . . . 6 𝑥 𝑦 ∈ {𝑥𝐴𝐵 ∈ V}
6 nfra1 2403 . . . . . . 7 𝑥𝑥𝐴 𝐵𝐶
7 fvmpt2.1 . . . . . . . . . 10 𝐹 = (𝑥𝐴𝐵)
8 nfmpt1 3897 . . . . . . . . . 10 𝑥(𝑥𝐴𝐵)
97, 8nfcxfr 2220 . . . . . . . . 9 𝑥𝐹
10 nfcv 2223 . . . . . . . . 9 𝑥𝑦
119, 10nffv 5258 . . . . . . . 8 𝑥(𝐹𝑦)
12 nfcv 2223 . . . . . . . 8 𝑥𝐶
1311, 12nfss 3003 . . . . . . 7 𝑥(𝐹𝑦) ⊆ 𝐶
146, 13nfim 1505 . . . . . 6 𝑥(∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶)
155, 14nfim 1505 . . . . 5 𝑥(𝑦 ∈ {𝑥𝐴𝐵 ∈ V} → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶))
16 eleq1 2145 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∈ {𝑥𝐴𝐵 ∈ V} ↔ 𝑦 ∈ {𝑥𝐴𝐵 ∈ V}))
17 fveq2 5251 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1817sseq1d 3037 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ⊆ 𝐶 ↔ (𝐹𝑦) ⊆ 𝐶))
1918imbi2d 228 . . . . . 6 (𝑥 = 𝑦 → ((∀𝑥𝐴 𝐵𝐶 → (𝐹𝑥) ⊆ 𝐶) ↔ (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶)))
2016, 19imbi12d 232 . . . . 5 (𝑥 = 𝑦 → ((𝑥 ∈ {𝑥𝐴𝐵 ∈ V} → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑥) ⊆ 𝐶)) ↔ (𝑦 ∈ {𝑥𝐴𝐵 ∈ V} → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶))))
217dmmpt 4878 . . . . . . 7 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
2221eleq2i 2149 . . . . . 6 (𝑥 ∈ dom 𝐹𝑥 ∈ {𝑥𝐴𝐵 ∈ V})
2321rabeq2i 2609 . . . . . . . . . 10 (𝑥 ∈ dom 𝐹 ↔ (𝑥𝐴𝐵 ∈ V))
247fvmpt2 5329 . . . . . . . . . . 11 ((𝑥𝐴𝐵 ∈ V) → (𝐹𝑥) = 𝐵)
25 eqimss 3062 . . . . . . . . . . 11 ((𝐹𝑥) = 𝐵 → (𝐹𝑥) ⊆ 𝐵)
2624, 25syl 14 . . . . . . . . . 10 ((𝑥𝐴𝐵 ∈ V) → (𝐹𝑥) ⊆ 𝐵)
2723, 26sylbi 119 . . . . . . . . 9 (𝑥 ∈ dom 𝐹 → (𝐹𝑥) ⊆ 𝐵)
2827adantr 270 . . . . . . . 8 ((𝑥 ∈ dom 𝐹 ∧ ∀𝑥𝐴 𝐵𝐶) → (𝐹𝑥) ⊆ 𝐵)
297dmmptss 4879 . . . . . . . . . 10 dom 𝐹𝐴
3029sseli 3006 . . . . . . . . 9 (𝑥 ∈ dom 𝐹𝑥𝐴)
31 rsp 2417 . . . . . . . . 9 (∀𝑥𝐴 𝐵𝐶 → (𝑥𝐴𝐵𝐶))
3230, 31mpan9 275 . . . . . . . 8 ((𝑥 ∈ dom 𝐹 ∧ ∀𝑥𝐴 𝐵𝐶) → 𝐵𝐶)
3328, 32sstrd 3020 . . . . . . 7 ((𝑥 ∈ dom 𝐹 ∧ ∀𝑥𝐴 𝐵𝐶) → (𝐹𝑥) ⊆ 𝐶)
3433ex 113 . . . . . 6 (𝑥 ∈ dom 𝐹 → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑥) ⊆ 𝐶))
3522, 34sylbir 133 . . . . 5 (𝑥 ∈ {𝑥𝐴𝐵 ∈ V} → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑥) ⊆ 𝐶))
3615, 20, 35chvar 1682 . . . 4 (𝑦 ∈ {𝑥𝐴𝐵 ∈ V} → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶))
373, 36vtoclga 2675 . . 3 (𝐷 ∈ {𝑥𝐴𝐵 ∈ V} → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶))
3837, 21eleq2s 2177 . 2 (𝐷 ∈ dom 𝐹 → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶))
3938imp 122 1 ((𝐷 ∈ dom 𝐹 ∧ ∀𝑥𝐴 𝐵𝐶) → (𝐹𝐷) ⊆ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  wral 2353  {crab 2357  Vcvv 2612  wss 2984  cmpt 3865  dom cdm 4399  cfv 4967
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4083  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fv 4975
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator