Step | Hyp | Ref
| Expression |
1 | | fveq2 5486 |
. . . . . 6
⊢ (𝑦 = 𝐷 → (𝐹‘𝑦) = (𝐹‘𝐷)) |
2 | 1 | sseq1d 3171 |
. . . . 5
⊢ (𝑦 = 𝐷 → ((𝐹‘𝑦) ⊆ 𝐶 ↔ (𝐹‘𝐷) ⊆ 𝐶)) |
3 | 2 | imbi2d 229 |
. . . 4
⊢ (𝑦 = 𝐷 → ((∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑦) ⊆ 𝐶) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝐷) ⊆ 𝐶))) |
4 | | nfrab1 2645 |
. . . . . . 7
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
5 | 4 | nfcri 2302 |
. . . . . 6
⊢
Ⅎ𝑥 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
6 | | nfra1 2497 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |
7 | | fvmpt2.1 |
. . . . . . . . . 10
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
8 | | nfmpt1 4075 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
9 | 7, 8 | nfcxfr 2305 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐹 |
10 | | nfcv 2308 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑦 |
11 | 9, 10 | nffv 5496 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝐹‘𝑦) |
12 | | nfcv 2308 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐶 |
13 | 11, 12 | nfss 3135 |
. . . . . . 7
⊢
Ⅎ𝑥(𝐹‘𝑦) ⊆ 𝐶 |
14 | 6, 13 | nfim 1560 |
. . . . . 6
⊢
Ⅎ𝑥(∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑦) ⊆ 𝐶) |
15 | 5, 14 | nfim 1560 |
. . . . 5
⊢
Ⅎ𝑥(𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑦) ⊆ 𝐶)) |
16 | | eleq1 2229 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V})) |
17 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
18 | 17 | sseq1d 3171 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) ⊆ 𝐶 ↔ (𝐹‘𝑦) ⊆ 𝐶)) |
19 | 18 | imbi2d 229 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑥) ⊆ 𝐶) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑦) ⊆ 𝐶))) |
20 | 16, 19 | imbi12d 233 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑥) ⊆ 𝐶)) ↔ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑦) ⊆ 𝐶)))) |
21 | 7 | dmmpt 5099 |
. . . . . . 7
⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
22 | 21 | eleq2i 2233 |
. . . . . 6
⊢ (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) |
23 | 21 | rabeq2i 2723 |
. . . . . . . . . 10
⊢ (𝑥 ∈ dom 𝐹 ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)) |
24 | 7 | fvmpt2 5569 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V) → (𝐹‘𝑥) = 𝐵) |
25 | | eqimss 3196 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑥) = 𝐵 → (𝐹‘𝑥) ⊆ 𝐵) |
26 | 24, 25 | syl 14 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V) → (𝐹‘𝑥) ⊆ 𝐵) |
27 | 23, 26 | sylbi 120 |
. . . . . . . . 9
⊢ (𝑥 ∈ dom 𝐹 → (𝐹‘𝑥) ⊆ 𝐵) |
28 | 27 | adantr 274 |
. . . . . . . 8
⊢ ((𝑥 ∈ dom 𝐹 ∧ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) → (𝐹‘𝑥) ⊆ 𝐵) |
29 | 7 | dmmptss 5100 |
. . . . . . . . . 10
⊢ dom 𝐹 ⊆ 𝐴 |
30 | 29 | sseli 3138 |
. . . . . . . . 9
⊢ (𝑥 ∈ dom 𝐹 → 𝑥 ∈ 𝐴) |
31 | | rsp 2513 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 𝐵 ⊆ 𝐶 → (𝑥 ∈ 𝐴 → 𝐵 ⊆ 𝐶)) |
32 | 30, 31 | mpan9 279 |
. . . . . . . 8
⊢ ((𝑥 ∈ dom 𝐹 ∧ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) → 𝐵 ⊆ 𝐶) |
33 | 28, 32 | sstrd 3152 |
. . . . . . 7
⊢ ((𝑥 ∈ dom 𝐹 ∧ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) → (𝐹‘𝑥) ⊆ 𝐶) |
34 | 33 | ex 114 |
. . . . . 6
⊢ (𝑥 ∈ dom 𝐹 → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑥) ⊆ 𝐶)) |
35 | 22, 34 | sylbir 134 |
. . . . 5
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑥) ⊆ 𝐶)) |
36 | 15, 20, 35 | chvar 1745 |
. . . 4
⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑦) ⊆ 𝐶)) |
37 | 3, 36 | vtoclga 2792 |
. . 3
⊢ (𝐷 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝐷) ⊆ 𝐶)) |
38 | 37, 21 | eleq2s 2261 |
. 2
⊢ (𝐷 ∈ dom 𝐹 → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝐷) ⊆ 𝐶)) |
39 | 38 | imp 123 |
1
⊢ ((𝐷 ∈ dom 𝐹 ∧ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) → (𝐹‘𝐷) ⊆ 𝐶) |