ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumsplitf GIF version

Theorem fsumsplitf 11419
Description: Split a sum into two parts. A version of fsumsplit 11418 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumsplitf.ph 𝑘𝜑
fsumsplitf.ab (𝜑 → (𝐴𝐵) = ∅)
fsumsplitf.u (𝜑𝑈 = (𝐴𝐵))
fsumsplitf.fi (𝜑𝑈 ∈ Fin)
fsumsplitf.c ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumsplitf (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑈,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)

Proof of Theorem fsumsplitf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3068 . . . 4 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
2 nfcv 2319 . . . 4 𝑗𝑈
3 nfcv 2319 . . . 4 𝑘𝑈
4 nfcv 2319 . . . 4 𝑗𝐶
5 nfcsb1v 3092 . . . 4 𝑘𝑗 / 𝑘𝐶
61, 2, 3, 4, 5cbvsum 11371 . . 3 Σ𝑘𝑈 𝐶 = Σ𝑗𝑈 𝑗 / 𝑘𝐶
76a1i 9 . 2 (𝜑 → Σ𝑘𝑈 𝐶 = Σ𝑗𝑈 𝑗 / 𝑘𝐶)
8 fsumsplitf.ab . . 3 (𝜑 → (𝐴𝐵) = ∅)
9 fsumsplitf.u . . 3 (𝜑𝑈 = (𝐴𝐵))
10 fsumsplitf.fi . . 3 (𝜑𝑈 ∈ Fin)
11 fsumsplitf.ph . . . . . 6 𝑘𝜑
12 nfv 1528 . . . . . 6 𝑘 𝑗𝑈
1311, 12nfan 1565 . . . . 5 𝑘(𝜑𝑗𝑈)
145nfel1 2330 . . . . 5 𝑘𝑗 / 𝑘𝐶 ∈ ℂ
1513, 14nfim 1572 . . . 4 𝑘((𝜑𝑗𝑈) → 𝑗 / 𝑘𝐶 ∈ ℂ)
16 eleq1w 2238 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝑈𝑗𝑈))
1716anbi2d 464 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝑈) ↔ (𝜑𝑗𝑈)))
181eleq1d 2246 . . . . 5 (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ 𝑗 / 𝑘𝐶 ∈ ℂ))
1917, 18imbi12d 234 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝑈) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑗𝑈) → 𝑗 / 𝑘𝐶 ∈ ℂ)))
20 fsumsplitf.c . . . 4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
2115, 19, 20chvar 1757 . . 3 ((𝜑𝑗𝑈) → 𝑗 / 𝑘𝐶 ∈ ℂ)
228, 9, 10, 21fsumsplit 11418 . 2 (𝜑 → Σ𝑗𝑈 𝑗 / 𝑘𝐶 = (Σ𝑗𝐴 𝑗 / 𝑘𝐶 + Σ𝑗𝐵 𝑗 / 𝑘𝐶))
23 csbeq1a 3068 . . . . . . 7 (𝑗 = 𝑘𝑗 / 𝑘𝐶 = 𝑘 / 𝑗𝑗 / 𝑘𝐶)
24 csbco 3069 . . . . . . . . 9 𝑘 / 𝑗𝑗 / 𝑘𝐶 = 𝑘 / 𝑘𝐶
25 csbid 3067 . . . . . . . . 9 𝑘 / 𝑘𝐶 = 𝐶
2624, 25eqtri 2198 . . . . . . . 8 𝑘 / 𝑗𝑗 / 𝑘𝐶 = 𝐶
2726a1i 9 . . . . . . 7 (𝑗 = 𝑘𝑘 / 𝑗𝑗 / 𝑘𝐶 = 𝐶)
2823, 27eqtrd 2210 . . . . . 6 (𝑗 = 𝑘𝑗 / 𝑘𝐶 = 𝐶)
29 nfcv 2319 . . . . . 6 𝑘𝐴
30 nfcv 2319 . . . . . 6 𝑗𝐴
3128, 29, 30, 5, 4cbvsum 11371 . . . . 5 Σ𝑗𝐴 𝑗 / 𝑘𝐶 = Σ𝑘𝐴 𝐶
32 eqid 2177 . . . . 5 Σ𝑘𝐴 𝐶 = Σ𝑘𝐴 𝐶
3331, 32eqtri 2198 . . . 4 Σ𝑗𝐴 𝑗 / 𝑘𝐶 = Σ𝑘𝐴 𝐶
345, 4, 28cbvsumi 11373 . . . 4 Σ𝑗𝐵 𝑗 / 𝑘𝐶 = Σ𝑘𝐵 𝐶
3533, 34oveq12i 5890 . . 3 𝑗𝐴 𝑗 / 𝑘𝐶 + Σ𝑗𝐵 𝑗 / 𝑘𝐶) = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶)
3635a1i 9 . 2 (𝜑 → (Σ𝑗𝐴 𝑗 / 𝑘𝐶 + Σ𝑗𝐵 𝑗 / 𝑘𝐶) = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
377, 22, 363eqtrd 2214 1 (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wnf 1460  wcel 2148  csb 3059  cun 3129  cin 3130  c0 3424  (class class class)co 5878  Fincfn 6743  cc 7812   + caddc 7817  Σcsu 11364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-frec 6395  df-1o 6420  df-oadd 6424  df-er 6538  df-en 6744  df-dom 6745  df-fin 6746  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-ihash 10759  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290  df-sumdc 11365
This theorem is referenced by:  fsumsplitsn  11421
  Copyright terms: Public domain W3C validator