ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumsplitf GIF version

Theorem fsumsplitf 11209
Description: Split a sum into two parts. A version of fsumsplit 11208 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumsplitf.ph 𝑘𝜑
fsumsplitf.ab (𝜑 → (𝐴𝐵) = ∅)
fsumsplitf.u (𝜑𝑈 = (𝐴𝐵))
fsumsplitf.fi (𝜑𝑈 ∈ Fin)
fsumsplitf.c ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumsplitf (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑈,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)

Proof of Theorem fsumsplitf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3016 . . . 4 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
2 nfcv 2282 . . . 4 𝑗𝑈
3 nfcv 2282 . . . 4 𝑘𝑈
4 nfcv 2282 . . . 4 𝑗𝐶
5 nfcsb1v 3040 . . . 4 𝑘𝑗 / 𝑘𝐶
61, 2, 3, 4, 5cbvsum 11161 . . 3 Σ𝑘𝑈 𝐶 = Σ𝑗𝑈 𝑗 / 𝑘𝐶
76a1i 9 . 2 (𝜑 → Σ𝑘𝑈 𝐶 = Σ𝑗𝑈 𝑗 / 𝑘𝐶)
8 fsumsplitf.ab . . 3 (𝜑 → (𝐴𝐵) = ∅)
9 fsumsplitf.u . . 3 (𝜑𝑈 = (𝐴𝐵))
10 fsumsplitf.fi . . 3 (𝜑𝑈 ∈ Fin)
11 fsumsplitf.ph . . . . . 6 𝑘𝜑
12 nfv 1509 . . . . . 6 𝑘 𝑗𝑈
1311, 12nfan 1545 . . . . 5 𝑘(𝜑𝑗𝑈)
145nfel1 2293 . . . . 5 𝑘𝑗 / 𝑘𝐶 ∈ ℂ
1513, 14nfim 1552 . . . 4 𝑘((𝜑𝑗𝑈) → 𝑗 / 𝑘𝐶 ∈ ℂ)
16 eleq1w 2201 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝑈𝑗𝑈))
1716anbi2d 460 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝑈) ↔ (𝜑𝑗𝑈)))
181eleq1d 2209 . . . . 5 (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ 𝑗 / 𝑘𝐶 ∈ ℂ))
1917, 18imbi12d 233 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝑈) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑗𝑈) → 𝑗 / 𝑘𝐶 ∈ ℂ)))
20 fsumsplitf.c . . . 4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
2115, 19, 20chvar 1731 . . 3 ((𝜑𝑗𝑈) → 𝑗 / 𝑘𝐶 ∈ ℂ)
228, 9, 10, 21fsumsplit 11208 . 2 (𝜑 → Σ𝑗𝑈 𝑗 / 𝑘𝐶 = (Σ𝑗𝐴 𝑗 / 𝑘𝐶 + Σ𝑗𝐵 𝑗 / 𝑘𝐶))
23 csbeq1a 3016 . . . . . . 7 (𝑗 = 𝑘𝑗 / 𝑘𝐶 = 𝑘 / 𝑗𝑗 / 𝑘𝐶)
24 csbco 3017 . . . . . . . . 9 𝑘 / 𝑗𝑗 / 𝑘𝐶 = 𝑘 / 𝑘𝐶
25 csbid 3015 . . . . . . . . 9 𝑘 / 𝑘𝐶 = 𝐶
2624, 25eqtri 2161 . . . . . . . 8 𝑘 / 𝑗𝑗 / 𝑘𝐶 = 𝐶
2726a1i 9 . . . . . . 7 (𝑗 = 𝑘𝑘 / 𝑗𝑗 / 𝑘𝐶 = 𝐶)
2823, 27eqtrd 2173 . . . . . 6 (𝑗 = 𝑘𝑗 / 𝑘𝐶 = 𝐶)
29 nfcv 2282 . . . . . 6 𝑘𝐴
30 nfcv 2282 . . . . . 6 𝑗𝐴
3128, 29, 30, 5, 4cbvsum 11161 . . . . 5 Σ𝑗𝐴 𝑗 / 𝑘𝐶 = Σ𝑘𝐴 𝐶
32 eqid 2140 . . . . 5 Σ𝑘𝐴 𝐶 = Σ𝑘𝐴 𝐶
3331, 32eqtri 2161 . . . 4 Σ𝑗𝐴 𝑗 / 𝑘𝐶 = Σ𝑘𝐴 𝐶
345, 4, 28cbvsumi 11163 . . . 4 Σ𝑗𝐵 𝑗 / 𝑘𝐶 = Σ𝑘𝐵 𝐶
3533, 34oveq12i 5794 . . 3 𝑗𝐴 𝑗 / 𝑘𝐶 + Σ𝑗𝐵 𝑗 / 𝑘𝐶) = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶)
3635a1i 9 . 2 (𝜑 → (Σ𝑗𝐴 𝑗 / 𝑘𝐶 + Σ𝑗𝐵 𝑗 / 𝑘𝐶) = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
377, 22, 363eqtrd 2177 1 (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wnf 1437  wcel 1481  csb 3007  cun 3074  cin 3075  c0 3368  (class class class)co 5782  Fincfn 6642  cc 7642   + caddc 7647  Σcsu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  fsumsplitsn  11211
  Copyright terms: Public domain W3C validator