ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabsb GIF version

Theorem opelopabsb 4140
Description: The law of concretion in terms of substitutions. (Contributed by NM, 30-Sep-2002.) (Revised by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
opelopabsb (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem opelopabsb
Dummy variables 𝑣 𝑢 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elopab 4138 . . . 4 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑} ↔ ∃𝑢𝑣(⟨𝐴, 𝐵⟩ = ⟨𝑢, 𝑣⟩ ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2 simpl 108 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ = ⟨𝑢, 𝑣⟩ ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → ⟨𝐴, 𝐵⟩ = ⟨𝑢, 𝑣⟩)
32eqcomd 2118 . . . . . . 7 ((⟨𝐴, 𝐵⟩ = ⟨𝑢, 𝑣⟩ ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → ⟨𝑢, 𝑣⟩ = ⟨𝐴, 𝐵⟩)
4 vex 2658 . . . . . . . 8 𝑢 ∈ V
5 vex 2658 . . . . . . . 8 𝑣 ∈ V
64, 5opth 4117 . . . . . . 7 (⟨𝑢, 𝑣⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑢 = 𝐴𝑣 = 𝐵))
73, 6sylib 121 . . . . . 6 ((⟨𝐴, 𝐵⟩ = ⟨𝑢, 𝑣⟩ ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → (𝑢 = 𝐴𝑣 = 𝐵))
872eximi 1561 . . . . 5 (∃𝑢𝑣(⟨𝐴, 𝐵⟩ = ⟨𝑢, 𝑣⟩ ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → ∃𝑢𝑣(𝑢 = 𝐴𝑣 = 𝐵))
9 eeanv 1880 . . . . . 6 (∃𝑢𝑣(𝑢 = 𝐴𝑣 = 𝐵) ↔ (∃𝑢 𝑢 = 𝐴 ∧ ∃𝑣 𝑣 = 𝐵))
10 isset 2661 . . . . . . 7 (𝐴 ∈ V ↔ ∃𝑢 𝑢 = 𝐴)
11 isset 2661 . . . . . . 7 (𝐵 ∈ V ↔ ∃𝑣 𝑣 = 𝐵)
1210, 11anbi12i 453 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (∃𝑢 𝑢 = 𝐴 ∧ ∃𝑣 𝑣 = 𝐵))
139, 12bitr4i 186 . . . . 5 (∃𝑢𝑣(𝑢 = 𝐴𝑣 = 𝐵) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
148, 13sylib 121 . . . 4 (∃𝑢𝑣(⟨𝐴, 𝐵⟩ = ⟨𝑢, 𝑣⟩ ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
151, 14sylbi 120 . . 3 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑} → (𝐴 ∈ V ∧ 𝐵 ∈ V))
16 nfv 1489 . . . 4 𝑢𝜑
17 nfv 1489 . . . 4 𝑣𝜑
18 nfs1v 1888 . . . 4 𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑
19 nfs1v 1888 . . . . 5 𝑦[𝑣 / 𝑦]𝜑
2019nfsbxy 1891 . . . 4 𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑
21 sbequ12 1725 . . . . 5 (𝑦 = 𝑣 → (𝜑 ↔ [𝑣 / 𝑦]𝜑))
22 sbequ12 1725 . . . . 5 (𝑥 = 𝑢 → ([𝑣 / 𝑦]𝜑 ↔ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2321, 22sylan9bbr 456 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝜑 ↔ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2416, 17, 18, 20, 23cbvopab 3957 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑢, 𝑣⟩ ∣ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑}
2515, 24eleq2s 2207 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝐴 ∈ V ∧ 𝐵 ∈ V))
26 sbcex 2884 . . 3 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝐴 ∈ V)
27 spesbc 2960 . . . 4 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 → ∃𝑥[𝐵 / 𝑦]𝜑)
28 sbcex 2884 . . . . 5 ([𝐵 / 𝑦]𝜑𝐵 ∈ V)
2928exlimiv 1558 . . . 4 (∃𝑥[𝐵 / 𝑦]𝜑𝐵 ∈ V)
3027, 29syl 14 . . 3 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝐵 ∈ V)
3126, 30jca 302 . 2 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
32 opeq1 3669 . . . . 5 (𝑧 = 𝐴 → ⟨𝑧, 𝑤⟩ = ⟨𝐴, 𝑤⟩)
3332eleq1d 2181 . . . 4 (𝑧 = 𝐴 → (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝐴, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
34 dfsbcq2 2879 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝐴 / 𝑥][𝑤 / 𝑦]𝜑))
3533, 34bibi12d 234 . . 3 (𝑧 = 𝐴 → ((⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ (⟨𝐴, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝑤 / 𝑦]𝜑)))
36 opeq2 3670 . . . . 5 (𝑤 = 𝐵 → ⟨𝐴, 𝑤⟩ = ⟨𝐴, 𝐵⟩)
3736eleq1d 2181 . . . 4 (𝑤 = 𝐵 → (⟨𝐴, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
38 dfsbcq2 2879 . . . . 5 (𝑤 = 𝐵 → ([𝑤 / 𝑦]𝜑[𝐵 / 𝑦]𝜑))
3938sbcbidv 2933 . . . 4 (𝑤 = 𝐵 → ([𝐴 / 𝑥][𝑤 / 𝑦]𝜑[𝐴 / 𝑥][𝐵 / 𝑦]𝜑))
4037, 39bibi12d 234 . . 3 (𝑤 = 𝐵 → ((⟨𝐴, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝑤 / 𝑦]𝜑) ↔ (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)))
41 nfopab1 3955 . . . . . 6 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
4241nfel2 2266 . . . . 5 𝑥𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
43 nfs1v 1888 . . . . 5 𝑥[𝑧 / 𝑥][𝑤 / 𝑦]𝜑
4442, 43nfbi 1549 . . . 4 𝑥(⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
45 opeq1 3669 . . . . . 6 (𝑥 = 𝑧 → ⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩)
4645eleq1d 2181 . . . . 5 (𝑥 = 𝑧 → (⟨𝑥, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
47 sbequ12 1725 . . . . 5 (𝑥 = 𝑧 → ([𝑤 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑))
4846, 47bibi12d 234 . . . 4 (𝑥 = 𝑧 → ((⟨𝑥, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦]𝜑) ↔ (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)))
49 nfopab2 3956 . . . . . . 7 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
5049nfel2 2266 . . . . . 6 𝑦𝑥, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
51 nfs1v 1888 . . . . . 6 𝑦[𝑤 / 𝑦]𝜑
5250, 51nfbi 1549 . . . . 5 𝑦(⟨𝑥, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦]𝜑)
53 opeq2 3670 . . . . . . 7 (𝑦 = 𝑤 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑤⟩)
5453eleq1d 2181 . . . . . 6 (𝑦 = 𝑤 → (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝑥, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
55 sbequ12 1725 . . . . . 6 (𝑦 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑦]𝜑))
5654, 55bibi12d 234 . . . . 5 (𝑦 = 𝑤 → ((⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑) ↔ (⟨𝑥, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦]𝜑)))
57 opabid 4137 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
5852, 56, 57chvar 1711 . . . 4 (⟨𝑥, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦]𝜑)
5944, 48, 58chvar 1711 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
6035, 40, 59vtocl2g 2719 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑))
6125, 31, 60pm5.21nii 676 1 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1312  wex 1449  wcel 1461  [wsb 1716  Vcvv 2655  [wsbc 2876  cop 3494  {copab 3946
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-rex 2394  df-v 2657  df-sbc 2877  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-opab 3948
This theorem is referenced by:  brabsb  4141  opelopabaf  4153  opelopabf  4154  difopab  4630  isarep1  5165
  Copyright terms: Public domain W3C validator