ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvex GIF version

Theorem cbvex 1782
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
cbvex.1 𝑦𝜑
cbvex.2 𝑥𝜓
cbvex.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvex (∃𝑥𝜑 ↔ ∃𝑦𝜓)

Proof of Theorem cbvex
StepHypRef Expression
1 cbvex.1 . . 3 𝑦𝜑
21nfri 1545 . 2 (𝜑 → ∀𝑦𝜑)
3 cbvex.2 . . 3 𝑥𝜓
43nfri 1545 . 2 (𝜓 → ∀𝑥𝜓)
5 cbvex.3 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
62, 4, 5cbvexh 1781 1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wnf 1486  wex 1518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560
This theorem depends on definitions:  df-bi 117  df-nf 1487
This theorem is referenced by:  sb8e  1883  cbvex2  1949  cbvmo  2097  mo23  2099  clelab  2335  cbvrexf  2737  issetf  2787  eqvincf  2908  rexab2  2949  cbvrexcsf  3168  abn0m  3497  rabn0m  3499  euabsn  3716  eluniab  3879  cbvopab1  4136  cbvopab2  4137  cbvopab1s  4138  intexabim  4215  iinexgm  4217  opeliunxp  4751  dfdmf  4893  dfrnf  4941  elrnmpt1  4951  cbvoprab1  6047  cbvoprab2  6048  opabex3d  6236  opabex3  6237  seq3f1olemp  10704  fsum2dlemstep  11911  bdsepnfALT  16162  strcollnfALT  16259
  Copyright terms: Public domain W3C validator