![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvex | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
cbvex.1 | ⊢ Ⅎ𝑦𝜑 |
cbvex.2 | ⊢ Ⅎ𝑥𝜓 |
cbvex.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvex | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvex.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfri 1519 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) |
3 | cbvex.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | nfri 1519 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
5 | cbvex.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 2, 4, 5 | cbvexh 1755 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1460 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: sb8e 1857 cbvex2 1922 cbvmo 2066 mo23 2067 clelab 2303 cbvrexf 2698 issetf 2745 eqvincf 2863 rexab2 2904 cbvrexcsf 3121 abn0m 3449 rabn0m 3451 euabsn 3663 eluniab 3822 cbvopab1 4077 cbvopab2 4078 cbvopab1s 4079 intexabim 4153 iinexgm 4155 opeliunxp 4682 dfdmf 4821 dfrnf 4869 elrnmpt1 4879 cbvoprab1 5947 cbvoprab2 5948 opabex3d 6122 opabex3 6123 seq3f1olemp 10502 fsum2dlemstep 11442 bdsepnfALT 14644 strcollnfALT 14741 |
Copyright terms: Public domain | W3C validator |