| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvex | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| cbvex.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvex.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvex.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvex | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvex.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfri 1545 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) |
| 3 | cbvex.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | nfri 1545 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
| 5 | cbvex.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 2, 4, 5 | cbvexh 1781 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1486 ∃wex 1518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 |
| This theorem is referenced by: sb8e 1883 cbvex2 1949 cbvmo 2097 mo23 2099 clelab 2335 cbvrexf 2737 issetf 2787 eqvincf 2908 rexab2 2949 cbvrexcsf 3168 abn0m 3497 rabn0m 3499 euabsn 3716 eluniab 3879 cbvopab1 4136 cbvopab2 4137 cbvopab1s 4138 intexabim 4215 iinexgm 4217 opeliunxp 4751 dfdmf 4893 dfrnf 4941 elrnmpt1 4951 cbvoprab1 6047 cbvoprab2 6048 opabex3d 6236 opabex3 6237 seq3f1olemp 10704 fsum2dlemstep 11911 bdsepnfALT 16162 strcollnfALT 16259 |
| Copyright terms: Public domain | W3C validator |