| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvex | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| cbvex.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvex.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvex.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvex | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvex.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfri 1565 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) |
| 3 | cbvex.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | nfri 1565 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
| 5 | cbvex.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 2, 4, 5 | cbvexh 1801 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1506 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: sb8e 1903 cbvex2 1969 cbvmo 2117 mo23 2119 clelab 2355 cbvrexf 2757 issetf 2807 eqvincf 2928 rexab2 2969 cbvrexcsf 3188 abn0m 3517 rabn0m 3519 euabsn 3736 eluniab 3900 cbvopab1 4157 cbvopab2 4158 cbvopab1s 4159 intexabim 4236 iinexgm 4238 opeliunxp 4774 dfdmf 4916 dfrnf 4965 elrnmpt1 4975 cbvoprab1 6082 cbvoprab2 6083 opabex3d 6272 opabex3 6273 seq3f1olemp 10745 fsum2dlemstep 11953 bdsepnfALT 16276 strcollnfALT 16373 |
| Copyright terms: Public domain | W3C validator |