ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvex GIF version

Theorem cbvex 1802
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
cbvex.1 𝑦𝜑
cbvex.2 𝑥𝜓
cbvex.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvex (∃𝑥𝜑 ↔ ∃𝑦𝜓)

Proof of Theorem cbvex
StepHypRef Expression
1 cbvex.1 . . 3 𝑦𝜑
21nfri 1565 . 2 (𝜑 → ∀𝑦𝜑)
3 cbvex.2 . . 3 𝑥𝜓
43nfri 1565 . 2 (𝜓 → ∀𝑥𝜓)
5 cbvex.3 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
62, 4, 5cbvexh 1801 1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wnf 1506  wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-nf 1507
This theorem is referenced by:  sb8e  1903  cbvex2  1969  cbvmo  2117  mo23  2119  clelab  2355  cbvrexf  2757  issetf  2807  eqvincf  2928  rexab2  2969  cbvrexcsf  3188  abn0m  3517  rabn0m  3519  euabsn  3736  eluniab  3900  cbvopab1  4157  cbvopab2  4158  cbvopab1s  4159  intexabim  4236  iinexgm  4238  opeliunxp  4774  dfdmf  4916  dfrnf  4965  elrnmpt1  4975  cbvoprab1  6082  cbvoprab2  6083  opabex3d  6272  opabex3  6273  seq3f1olemp  10745  fsum2dlemstep  11953  bdsepnfALT  16276  strcollnfALT  16373
  Copyright terms: Public domain W3C validator