![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvex | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
cbvex.1 | ⊢ Ⅎ𝑦𝜑 |
cbvex.2 | ⊢ Ⅎ𝑥𝜓 |
cbvex.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvex | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvex.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfri 1530 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) |
3 | cbvex.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | nfri 1530 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
5 | cbvex.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 2, 4, 5 | cbvexh 1766 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1471 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: sb8e 1868 cbvex2 1934 cbvmo 2082 mo23 2083 clelab 2319 cbvrexf 2719 issetf 2767 eqvincf 2885 rexab2 2926 cbvrexcsf 3144 abn0m 3472 rabn0m 3474 euabsn 3688 eluniab 3847 cbvopab1 4102 cbvopab2 4103 cbvopab1s 4104 intexabim 4181 iinexgm 4183 opeliunxp 4714 dfdmf 4855 dfrnf 4903 elrnmpt1 4913 cbvoprab1 5990 cbvoprab2 5991 opabex3d 6173 opabex3 6174 seq3f1olemp 10586 fsum2dlemstep 11577 bdsepnfALT 15381 strcollnfALT 15478 |
Copyright terms: Public domain | W3C validator |