| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvex | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| cbvex.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvex.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvex.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvex | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvex.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfri 1543 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) |
| 3 | cbvex.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | nfri 1543 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
| 5 | cbvex.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 2, 4, 5 | cbvexh 1779 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1484 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: sb8e 1881 cbvex2 1947 cbvmo 2095 mo23 2096 clelab 2332 cbvrexf 2732 issetf 2780 eqvincf 2899 rexab2 2940 cbvrexcsf 3158 abn0m 3487 rabn0m 3489 euabsn 3704 eluniab 3864 cbvopab1 4121 cbvopab2 4122 cbvopab1s 4123 intexabim 4200 iinexgm 4202 opeliunxp 4734 dfdmf 4876 dfrnf 4924 elrnmpt1 4934 cbvoprab1 6024 cbvoprab2 6025 opabex3d 6213 opabex3 6214 seq3f1olemp 10667 fsum2dlemstep 11789 bdsepnfALT 15899 strcollnfALT 15996 |
| Copyright terms: Public domain | W3C validator |