![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvex | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
cbvex.1 | ⊢ Ⅎ𝑦𝜑 |
cbvex.2 | ⊢ Ⅎ𝑥𝜓 |
cbvex.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvex | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvex.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfri 1457 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) |
3 | cbvex.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | nfri 1457 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
5 | cbvex.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 2, 4, 5 | cbvexh 1685 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 Ⅎwnf 1394 ∃wex 1426 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 df-nf 1395 |
This theorem is referenced by: sb8e 1785 cbvex2 1845 cbvmo 1988 mo23 1989 clelab 2212 cbvrexf 2585 issetf 2626 eqvincf 2742 rexab2 2781 cbvrexcsf 2991 abn0m 3308 rabn0m 3310 euabsn 3512 eluniab 3665 cbvopab1 3911 cbvopab2 3912 cbvopab1s 3913 intexabim 3988 iinexgm 3990 opeliunxp 4493 dfdmf 4629 dfrnf 4676 elrnmpt1 4686 cbvoprab1 5720 cbvoprab2 5721 opabex3d 5892 opabex3 5893 seq3f1olemp 9931 fsum2dlemstep 10828 bdsepnfALT 11780 strcollnfALT 11881 |
Copyright terms: Public domain | W3C validator |