ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvex GIF version

Theorem cbvex 1770
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
cbvex.1 𝑦𝜑
cbvex.2 𝑥𝜓
cbvex.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvex (∃𝑥𝜑 ↔ ∃𝑦𝜓)

Proof of Theorem cbvex
StepHypRef Expression
1 cbvex.1 . . 3 𝑦𝜑
21nfri 1533 . 2 (𝜑 → ∀𝑦𝜑)
3 cbvex.2 . . 3 𝑥𝜓
43nfri 1533 . 2 (𝜓 → ∀𝑥𝜓)
5 cbvex.3 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
62, 4, 5cbvexh 1769 1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wnf 1474  wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-nf 1475
This theorem is referenced by:  sb8e  1871  cbvex2  1937  cbvmo  2085  mo23  2086  clelab  2322  cbvrexf  2722  issetf  2770  eqvincf  2889  rexab2  2930  cbvrexcsf  3148  abn0m  3477  rabn0m  3479  euabsn  3693  eluniab  3852  cbvopab1  4107  cbvopab2  4108  cbvopab1s  4109  intexabim  4186  iinexgm  4188  opeliunxp  4719  dfdmf  4860  dfrnf  4908  elrnmpt1  4918  cbvoprab1  5998  cbvoprab2  5999  opabex3d  6187  opabex3  6188  seq3f1olemp  10624  fsum2dlemstep  11616  bdsepnfALT  15619  strcollnfALT  15716
  Copyright terms: Public domain W3C validator