ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind4s GIF version

Theorem uzind4s 9563
Description: Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.)
Hypotheses
Ref Expression
uzind4s.1 (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑)
uzind4s.2 (𝑘 ∈ (ℤ𝑀) → (𝜑[(𝑘 + 1) / 𝑘]𝜑))
Assertion
Ref Expression
uzind4s (𝑁 ∈ (ℤ𝑀) → [𝑁 / 𝑘]𝜑)
Distinct variable group:   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑘)   𝑁(𝑘)

Proof of Theorem uzind4s
Dummy variables 𝑚 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2963 . 2 (𝑗 = 𝑀 → ([𝑗 / 𝑘]𝜑[𝑀 / 𝑘]𝜑))
2 sbequ 1838 . 2 (𝑗 = 𝑚 → ([𝑗 / 𝑘]𝜑 ↔ [𝑚 / 𝑘]𝜑))
3 dfsbcq2 2963 . 2 (𝑗 = (𝑚 + 1) → ([𝑗 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
4 dfsbcq2 2963 . 2 (𝑗 = 𝑁 → ([𝑗 / 𝑘]𝜑[𝑁 / 𝑘]𝜑))
5 uzind4s.1 . 2 (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑)
6 nfv 1526 . . . 4 𝑘 𝑚 ∈ (ℤ𝑀)
7 nfs1v 1937 . . . . 5 𝑘[𝑚 / 𝑘]𝜑
8 nfsbc1v 2979 . . . . 5 𝑘[(𝑚 + 1) / 𝑘]𝜑
97, 8nfim 1570 . . . 4 𝑘([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑)
106, 9nfim 1570 . . 3 𝑘(𝑚 ∈ (ℤ𝑀) → ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
11 eleq1 2238 . . . 4 (𝑘 = 𝑚 → (𝑘 ∈ (ℤ𝑀) ↔ 𝑚 ∈ (ℤ𝑀)))
12 sbequ12 1769 . . . . 5 (𝑘 = 𝑚 → (𝜑 ↔ [𝑚 / 𝑘]𝜑))
13 oveq1 5872 . . . . . 6 (𝑘 = 𝑚 → (𝑘 + 1) = (𝑚 + 1))
1413sbceq1d 2965 . . . . 5 (𝑘 = 𝑚 → ([(𝑘 + 1) / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
1512, 14imbi12d 234 . . . 4 (𝑘 = 𝑚 → ((𝜑[(𝑘 + 1) / 𝑘]𝜑) ↔ ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑)))
1611, 15imbi12d 234 . . 3 (𝑘 = 𝑚 → ((𝑘 ∈ (ℤ𝑀) → (𝜑[(𝑘 + 1) / 𝑘]𝜑)) ↔ (𝑚 ∈ (ℤ𝑀) → ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))))
17 uzind4s.2 . . 3 (𝑘 ∈ (ℤ𝑀) → (𝜑[(𝑘 + 1) / 𝑘]𝜑))
1810, 16, 17chvar 1755 . 2 (𝑚 ∈ (ℤ𝑀) → ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
191, 2, 3, 4, 5, 18uzind4 9561 1 (𝑁 ∈ (ℤ𝑀) → [𝑁 / 𝑘]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  [wsb 1760  wcel 2146  [wsbc 2960  cfv 5208  (class class class)co 5865  1c1 7787   + caddc 7789  cz 9226  cuz 9501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8893  df-n0 9150  df-z 9227  df-uz 9502
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator