ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind4s GIF version

Theorem uzind4s 9658
Description: Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.)
Hypotheses
Ref Expression
uzind4s.1 (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑)
uzind4s.2 (𝑘 ∈ (ℤ𝑀) → (𝜑[(𝑘 + 1) / 𝑘]𝜑))
Assertion
Ref Expression
uzind4s (𝑁 ∈ (ℤ𝑀) → [𝑁 / 𝑘]𝜑)
Distinct variable group:   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑘)   𝑁(𝑘)

Proof of Theorem uzind4s
Dummy variables 𝑚 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2989 . 2 (𝑗 = 𝑀 → ([𝑗 / 𝑘]𝜑[𝑀 / 𝑘]𝜑))
2 sbequ 1851 . 2 (𝑗 = 𝑚 → ([𝑗 / 𝑘]𝜑 ↔ [𝑚 / 𝑘]𝜑))
3 dfsbcq2 2989 . 2 (𝑗 = (𝑚 + 1) → ([𝑗 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
4 dfsbcq2 2989 . 2 (𝑗 = 𝑁 → ([𝑗 / 𝑘]𝜑[𝑁 / 𝑘]𝜑))
5 uzind4s.1 . 2 (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑)
6 nfv 1539 . . . 4 𝑘 𝑚 ∈ (ℤ𝑀)
7 nfs1v 1955 . . . . 5 𝑘[𝑚 / 𝑘]𝜑
8 nfsbc1v 3005 . . . . 5 𝑘[(𝑚 + 1) / 𝑘]𝜑
97, 8nfim 1583 . . . 4 𝑘([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑)
106, 9nfim 1583 . . 3 𝑘(𝑚 ∈ (ℤ𝑀) → ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
11 eleq1 2256 . . . 4 (𝑘 = 𝑚 → (𝑘 ∈ (ℤ𝑀) ↔ 𝑚 ∈ (ℤ𝑀)))
12 sbequ12 1782 . . . . 5 (𝑘 = 𝑚 → (𝜑 ↔ [𝑚 / 𝑘]𝜑))
13 oveq1 5926 . . . . . 6 (𝑘 = 𝑚 → (𝑘 + 1) = (𝑚 + 1))
1413sbceq1d 2991 . . . . 5 (𝑘 = 𝑚 → ([(𝑘 + 1) / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
1512, 14imbi12d 234 . . . 4 (𝑘 = 𝑚 → ((𝜑[(𝑘 + 1) / 𝑘]𝜑) ↔ ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑)))
1611, 15imbi12d 234 . . 3 (𝑘 = 𝑚 → ((𝑘 ∈ (ℤ𝑀) → (𝜑[(𝑘 + 1) / 𝑘]𝜑)) ↔ (𝑚 ∈ (ℤ𝑀) → ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))))
17 uzind4s.2 . . 3 (𝑘 ∈ (ℤ𝑀) → (𝜑[(𝑘 + 1) / 𝑘]𝜑))
1810, 16, 17chvar 1768 . 2 (𝑚 ∈ (ℤ𝑀) → ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
191, 2, 3, 4, 5, 18uzind4 9656 1 (𝑁 ∈ (ℤ𝑀) → [𝑁 / 𝑘]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  [wsb 1773  wcel 2164  [wsbc 2986  cfv 5255  (class class class)co 5919  1c1 7875   + caddc 7877  cz 9320  cuz 9595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator