![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uzind4s | GIF version |
Description: Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.) |
Ref | Expression |
---|---|
uzind4s.1 | ⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑) |
uzind4s.2 | ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜑 → [(𝑘 + 1) / 𝑘]𝜑)) |
Ref | Expression |
---|---|
uzind4s | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑘]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 2967 | . 2 ⊢ (𝑗 = 𝑀 → ([𝑗 / 𝑘]𝜑 ↔ [𝑀 / 𝑘]𝜑)) | |
2 | sbequ 1840 | . 2 ⊢ (𝑗 = 𝑚 → ([𝑗 / 𝑘]𝜑 ↔ [𝑚 / 𝑘]𝜑)) | |
3 | dfsbcq2 2967 | . 2 ⊢ (𝑗 = (𝑚 + 1) → ([𝑗 / 𝑘]𝜑 ↔ [(𝑚 + 1) / 𝑘]𝜑)) | |
4 | dfsbcq2 2967 | . 2 ⊢ (𝑗 = 𝑁 → ([𝑗 / 𝑘]𝜑 ↔ [𝑁 / 𝑘]𝜑)) | |
5 | uzind4s.1 | . 2 ⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑) | |
6 | nfv 1528 | . . . 4 ⊢ Ⅎ𝑘 𝑚 ∈ (ℤ≥‘𝑀) | |
7 | nfs1v 1939 | . . . . 5 ⊢ Ⅎ𝑘[𝑚 / 𝑘]𝜑 | |
8 | nfsbc1v 2983 | . . . . 5 ⊢ Ⅎ𝑘[(𝑚 + 1) / 𝑘]𝜑 | |
9 | 7, 8 | nfim 1572 | . . . 4 ⊢ Ⅎ𝑘([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑) |
10 | 6, 9 | nfim 1572 | . . 3 ⊢ Ⅎ𝑘(𝑚 ∈ (ℤ≥‘𝑀) → ([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑)) |
11 | eleq1 2240 | . . . 4 ⊢ (𝑘 = 𝑚 → (𝑘 ∈ (ℤ≥‘𝑀) ↔ 𝑚 ∈ (ℤ≥‘𝑀))) | |
12 | sbequ12 1771 | . . . . 5 ⊢ (𝑘 = 𝑚 → (𝜑 ↔ [𝑚 / 𝑘]𝜑)) | |
13 | oveq1 5884 | . . . . . 6 ⊢ (𝑘 = 𝑚 → (𝑘 + 1) = (𝑚 + 1)) | |
14 | 13 | sbceq1d 2969 | . . . . 5 ⊢ (𝑘 = 𝑚 → ([(𝑘 + 1) / 𝑘]𝜑 ↔ [(𝑚 + 1) / 𝑘]𝜑)) |
15 | 12, 14 | imbi12d 234 | . . . 4 ⊢ (𝑘 = 𝑚 → ((𝜑 → [(𝑘 + 1) / 𝑘]𝜑) ↔ ([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑))) |
16 | 11, 15 | imbi12d 234 | . . 3 ⊢ (𝑘 = 𝑚 → ((𝑘 ∈ (ℤ≥‘𝑀) → (𝜑 → [(𝑘 + 1) / 𝑘]𝜑)) ↔ (𝑚 ∈ (ℤ≥‘𝑀) → ([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑)))) |
17 | uzind4s.2 | . . 3 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜑 → [(𝑘 + 1) / 𝑘]𝜑)) | |
18 | 10, 16, 17 | chvar 1757 | . 2 ⊢ (𝑚 ∈ (ℤ≥‘𝑀) → ([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑)) |
19 | 1, 2, 3, 4, 5, 18 | uzind4 9590 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑘]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 [wsb 1762 ∈ wcel 2148 [wsbc 2964 ‘cfv 5218 (class class class)co 5877 1c1 7814 + caddc 7816 ℤcz 9255 ℤ≥cuz 9530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |