![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uzind4s | GIF version |
Description: Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.) |
Ref | Expression |
---|---|
uzind4s.1 | ⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑) |
uzind4s.2 | ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜑 → [(𝑘 + 1) / 𝑘]𝜑)) |
Ref | Expression |
---|---|
uzind4s | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑘]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 2843 | . 2 ⊢ (𝑗 = 𝑀 → ([𝑗 / 𝑘]𝜑 ↔ [𝑀 / 𝑘]𝜑)) | |
2 | sbequ 1768 | . 2 ⊢ (𝑗 = 𝑚 → ([𝑗 / 𝑘]𝜑 ↔ [𝑚 / 𝑘]𝜑)) | |
3 | dfsbcq2 2843 | . 2 ⊢ (𝑗 = (𝑚 + 1) → ([𝑗 / 𝑘]𝜑 ↔ [(𝑚 + 1) / 𝑘]𝜑)) | |
4 | dfsbcq2 2843 | . 2 ⊢ (𝑗 = 𝑁 → ([𝑗 / 𝑘]𝜑 ↔ [𝑁 / 𝑘]𝜑)) | |
5 | uzind4s.1 | . 2 ⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑) | |
6 | nfv 1466 | . . . 4 ⊢ Ⅎ𝑘 𝑚 ∈ (ℤ≥‘𝑀) | |
7 | nfs1v 1863 | . . . . 5 ⊢ Ⅎ𝑘[𝑚 / 𝑘]𝜑 | |
8 | nfsbc1v 2858 | . . . . 5 ⊢ Ⅎ𝑘[(𝑚 + 1) / 𝑘]𝜑 | |
9 | 7, 8 | nfim 1509 | . . . 4 ⊢ Ⅎ𝑘([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑) |
10 | 6, 9 | nfim 1509 | . . 3 ⊢ Ⅎ𝑘(𝑚 ∈ (ℤ≥‘𝑀) → ([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑)) |
11 | eleq1 2150 | . . . 4 ⊢ (𝑘 = 𝑚 → (𝑘 ∈ (ℤ≥‘𝑀) ↔ 𝑚 ∈ (ℤ≥‘𝑀))) | |
12 | sbequ12 1701 | . . . . 5 ⊢ (𝑘 = 𝑚 → (𝜑 ↔ [𝑚 / 𝑘]𝜑)) | |
13 | oveq1 5659 | . . . . . 6 ⊢ (𝑘 = 𝑚 → (𝑘 + 1) = (𝑚 + 1)) | |
14 | 13 | sbceq1d 2845 | . . . . 5 ⊢ (𝑘 = 𝑚 → ([(𝑘 + 1) / 𝑘]𝜑 ↔ [(𝑚 + 1) / 𝑘]𝜑)) |
15 | 12, 14 | imbi12d 232 | . . . 4 ⊢ (𝑘 = 𝑚 → ((𝜑 → [(𝑘 + 1) / 𝑘]𝜑) ↔ ([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑))) |
16 | 11, 15 | imbi12d 232 | . . 3 ⊢ (𝑘 = 𝑚 → ((𝑘 ∈ (ℤ≥‘𝑀) → (𝜑 → [(𝑘 + 1) / 𝑘]𝜑)) ↔ (𝑚 ∈ (ℤ≥‘𝑀) → ([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑)))) |
17 | uzind4s.2 | . . 3 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜑 → [(𝑘 + 1) / 𝑘]𝜑)) | |
18 | 10, 16, 17 | chvar 1687 | . 2 ⊢ (𝑚 ∈ (ℤ≥‘𝑀) → ([𝑚 / 𝑘]𝜑 → [(𝑚 + 1) / 𝑘]𝜑)) |
19 | 1, 2, 3, 4, 5, 18 | uzind4 9076 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑘]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1438 [wsb 1692 [wsbc 2840 ‘cfv 5015 (class class class)co 5652 1c1 7351 + caddc 7353 ℤcz 8750 ℤ≥cuz 9019 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-cnex 7436 ax-resscn 7437 ax-1cn 7438 ax-1re 7439 ax-icn 7440 ax-addcl 7441 ax-addrcl 7442 ax-mulcl 7443 ax-addcom 7445 ax-addass 7447 ax-distr 7449 ax-i2m1 7450 ax-0lt1 7451 ax-0id 7453 ax-rnegex 7454 ax-cnre 7456 ax-pre-ltirr 7457 ax-pre-ltwlin 7458 ax-pre-lttrn 7459 ax-pre-ltadd 7461 |
This theorem depends on definitions: df-bi 115 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-fv 5023 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-pnf 7524 df-mnf 7525 df-xr 7526 df-ltxr 7527 df-le 7528 df-sub 7655 df-neg 7656 df-inn 8423 df-n0 8674 df-z 8751 df-uz 9020 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |