ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfoprab4f GIF version

Theorem dfoprab4f 6161
Description: Operation class abstraction expressed without existential quantifiers. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
dfoprab4f.x 𝑥𝜑
dfoprab4f.y 𝑦𝜑
dfoprab4f.1 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
Assertion
Ref Expression
dfoprab4f {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑤,𝐴,𝑥,𝑦   𝑤,𝐵,𝑥,𝑦   𝜓,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧)   𝐴(𝑧)   𝐵(𝑧)

Proof of Theorem dfoprab4f
Dummy variables 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1516 . . . . 5 𝑥 𝑤 = ⟨𝑡, 𝑢
2 dfoprab4f.x . . . . . 6 𝑥𝜑
3 nfs1v 1927 . . . . . 6 𝑥[𝑡 / 𝑥][𝑢 / 𝑦]𝜓
42, 3nfbi 1577 . . . . 5 𝑥(𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)
51, 4nfim 1560 . . . 4 𝑥(𝑤 = ⟨𝑡, 𝑢⟩ → (𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓))
6 opeq1 3758 . . . . . 6 (𝑥 = 𝑡 → ⟨𝑥, 𝑢⟩ = ⟨𝑡, 𝑢⟩)
76eqeq2d 2177 . . . . 5 (𝑥 = 𝑡 → (𝑤 = ⟨𝑥, 𝑢⟩ ↔ 𝑤 = ⟨𝑡, 𝑢⟩))
8 sbequ12 1759 . . . . . 6 (𝑥 = 𝑡 → ([𝑢 / 𝑦]𝜓 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓))
98bibi2d 231 . . . . 5 (𝑥 = 𝑡 → ((𝜑 ↔ [𝑢 / 𝑦]𝜓) ↔ (𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)))
107, 9imbi12d 233 . . . 4 (𝑥 = 𝑡 → ((𝑤 = ⟨𝑥, 𝑢⟩ → (𝜑 ↔ [𝑢 / 𝑦]𝜓)) ↔ (𝑤 = ⟨𝑡, 𝑢⟩ → (𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓))))
11 nfv 1516 . . . . . 6 𝑦 𝑤 = ⟨𝑥, 𝑢
12 dfoprab4f.y . . . . . . 7 𝑦𝜑
13 nfs1v 1927 . . . . . . 7 𝑦[𝑢 / 𝑦]𝜓
1412, 13nfbi 1577 . . . . . 6 𝑦(𝜑 ↔ [𝑢 / 𝑦]𝜓)
1511, 14nfim 1560 . . . . 5 𝑦(𝑤 = ⟨𝑥, 𝑢⟩ → (𝜑 ↔ [𝑢 / 𝑦]𝜓))
16 opeq2 3759 . . . . . . 7 (𝑦 = 𝑢 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑢⟩)
1716eqeq2d 2177 . . . . . 6 (𝑦 = 𝑢 → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ 𝑤 = ⟨𝑥, 𝑢⟩))
18 sbequ12 1759 . . . . . . 7 (𝑦 = 𝑢 → (𝜓 ↔ [𝑢 / 𝑦]𝜓))
1918bibi2d 231 . . . . . 6 (𝑦 = 𝑢 → ((𝜑𝜓) ↔ (𝜑 ↔ [𝑢 / 𝑦]𝜓)))
2017, 19imbi12d 233 . . . . 5 (𝑦 = 𝑢 → ((𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓)) ↔ (𝑤 = ⟨𝑥, 𝑢⟩ → (𝜑 ↔ [𝑢 / 𝑦]𝜓))))
21 dfoprab4f.1 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
2215, 20, 21chvar 1745 . . . 4 (𝑤 = ⟨𝑥, 𝑢⟩ → (𝜑 ↔ [𝑢 / 𝑦]𝜓))
235, 10, 22chvar 1745 . . 3 (𝑤 = ⟨𝑡, 𝑢⟩ → (𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓))
2423dfoprab4 6160 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑡, 𝑢⟩, 𝑧⟩ ∣ ((𝑡𝐴𝑢𝐵) ∧ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)}
25 nfv 1516 . . 3 𝑡((𝑥𝐴𝑦𝐵) ∧ 𝜓)
26 nfv 1516 . . 3 𝑢((𝑥𝐴𝑦𝐵) ∧ 𝜓)
27 nfv 1516 . . . 4 𝑥(𝑡𝐴𝑢𝐵)
2827, 3nfan 1553 . . 3 𝑥((𝑡𝐴𝑢𝐵) ∧ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)
29 nfv 1516 . . . 4 𝑦(𝑡𝐴𝑢𝐵)
3013nfsb 1934 . . . 4 𝑦[𝑡 / 𝑥][𝑢 / 𝑦]𝜓
3129, 30nfan 1553 . . 3 𝑦((𝑡𝐴𝑢𝐵) ∧ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)
32 eleq1 2229 . . . . 5 (𝑥 = 𝑡 → (𝑥𝐴𝑡𝐴))
33 eleq1 2229 . . . . 5 (𝑦 = 𝑢 → (𝑦𝐵𝑢𝐵))
3432, 33bi2anan9 596 . . . 4 ((𝑥 = 𝑡𝑦 = 𝑢) → ((𝑥𝐴𝑦𝐵) ↔ (𝑡𝐴𝑢𝐵)))
3518, 8sylan9bbr 459 . . . 4 ((𝑥 = 𝑡𝑦 = 𝑢) → (𝜓 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓))
3634, 35anbi12d 465 . . 3 ((𝑥 = 𝑡𝑦 = 𝑢) → (((𝑥𝐴𝑦𝐵) ∧ 𝜓) ↔ ((𝑡𝐴𝑢𝐵) ∧ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)))
3725, 26, 28, 31, 36cbvoprab12 5916 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} = {⟨⟨𝑡, 𝑢⟩, 𝑧⟩ ∣ ((𝑡𝐴𝑢𝐵) ∧ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)}
3824, 37eqtr4i 2189 1 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wnf 1448  [wsb 1750  wcel 2136  cop 3579  {copab 4042   × cxp 4602  {coprab 5843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196  df-oprab 5846  df-1st 6108  df-2nd 6109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator