ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfoprab4f GIF version

Theorem dfoprab4f 6269
Description: Operation class abstraction expressed without existential quantifiers. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
dfoprab4f.x 𝑥𝜑
dfoprab4f.y 𝑦𝜑
dfoprab4f.1 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
Assertion
Ref Expression
dfoprab4f {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑤,𝐴,𝑥,𝑦   𝑤,𝐵,𝑥,𝑦   𝜓,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧)   𝐴(𝑧)   𝐵(𝑧)

Proof of Theorem dfoprab4f
Dummy variables 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1550 . . . . 5 𝑥 𝑤 = ⟨𝑡, 𝑢
2 dfoprab4f.x . . . . . 6 𝑥𝜑
3 nfs1v 1966 . . . . . 6 𝑥[𝑡 / 𝑥][𝑢 / 𝑦]𝜓
42, 3nfbi 1611 . . . . 5 𝑥(𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)
51, 4nfim 1594 . . . 4 𝑥(𝑤 = ⟨𝑡, 𝑢⟩ → (𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓))
6 opeq1 3818 . . . . . 6 (𝑥 = 𝑡 → ⟨𝑥, 𝑢⟩ = ⟨𝑡, 𝑢⟩)
76eqeq2d 2216 . . . . 5 (𝑥 = 𝑡 → (𝑤 = ⟨𝑥, 𝑢⟩ ↔ 𝑤 = ⟨𝑡, 𝑢⟩))
8 sbequ12 1793 . . . . . 6 (𝑥 = 𝑡 → ([𝑢 / 𝑦]𝜓 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓))
98bibi2d 232 . . . . 5 (𝑥 = 𝑡 → ((𝜑 ↔ [𝑢 / 𝑦]𝜓) ↔ (𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)))
107, 9imbi12d 234 . . . 4 (𝑥 = 𝑡 → ((𝑤 = ⟨𝑥, 𝑢⟩ → (𝜑 ↔ [𝑢 / 𝑦]𝜓)) ↔ (𝑤 = ⟨𝑡, 𝑢⟩ → (𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓))))
11 nfv 1550 . . . . . 6 𝑦 𝑤 = ⟨𝑥, 𝑢
12 dfoprab4f.y . . . . . . 7 𝑦𝜑
13 nfs1v 1966 . . . . . . 7 𝑦[𝑢 / 𝑦]𝜓
1412, 13nfbi 1611 . . . . . 6 𝑦(𝜑 ↔ [𝑢 / 𝑦]𝜓)
1511, 14nfim 1594 . . . . 5 𝑦(𝑤 = ⟨𝑥, 𝑢⟩ → (𝜑 ↔ [𝑢 / 𝑦]𝜓))
16 opeq2 3819 . . . . . . 7 (𝑦 = 𝑢 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑢⟩)
1716eqeq2d 2216 . . . . . 6 (𝑦 = 𝑢 → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ 𝑤 = ⟨𝑥, 𝑢⟩))
18 sbequ12 1793 . . . . . . 7 (𝑦 = 𝑢 → (𝜓 ↔ [𝑢 / 𝑦]𝜓))
1918bibi2d 232 . . . . . 6 (𝑦 = 𝑢 → ((𝜑𝜓) ↔ (𝜑 ↔ [𝑢 / 𝑦]𝜓)))
2017, 19imbi12d 234 . . . . 5 (𝑦 = 𝑢 → ((𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓)) ↔ (𝑤 = ⟨𝑥, 𝑢⟩ → (𝜑 ↔ [𝑢 / 𝑦]𝜓))))
21 dfoprab4f.1 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
2215, 20, 21chvar 1779 . . . 4 (𝑤 = ⟨𝑥, 𝑢⟩ → (𝜑 ↔ [𝑢 / 𝑦]𝜓))
235, 10, 22chvar 1779 . . 3 (𝑤 = ⟨𝑡, 𝑢⟩ → (𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓))
2423dfoprab4 6268 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑡, 𝑢⟩, 𝑧⟩ ∣ ((𝑡𝐴𝑢𝐵) ∧ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)}
25 nfv 1550 . . 3 𝑡((𝑥𝐴𝑦𝐵) ∧ 𝜓)
26 nfv 1550 . . 3 𝑢((𝑥𝐴𝑦𝐵) ∧ 𝜓)
27 nfv 1550 . . . 4 𝑥(𝑡𝐴𝑢𝐵)
2827, 3nfan 1587 . . 3 𝑥((𝑡𝐴𝑢𝐵) ∧ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)
29 nfv 1550 . . . 4 𝑦(𝑡𝐴𝑢𝐵)
3013nfsb 1973 . . . 4 𝑦[𝑡 / 𝑥][𝑢 / 𝑦]𝜓
3129, 30nfan 1587 . . 3 𝑦((𝑡𝐴𝑢𝐵) ∧ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)
32 eleq1 2267 . . . . 5 (𝑥 = 𝑡 → (𝑥𝐴𝑡𝐴))
33 eleq1 2267 . . . . 5 (𝑦 = 𝑢 → (𝑦𝐵𝑢𝐵))
3432, 33bi2anan9 606 . . . 4 ((𝑥 = 𝑡𝑦 = 𝑢) → ((𝑥𝐴𝑦𝐵) ↔ (𝑡𝐴𝑢𝐵)))
3518, 8sylan9bbr 463 . . . 4 ((𝑥 = 𝑡𝑦 = 𝑢) → (𝜓 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓))
3634, 35anbi12d 473 . . 3 ((𝑥 = 𝑡𝑦 = 𝑢) → (((𝑥𝐴𝑦𝐵) ∧ 𝜓) ↔ ((𝑡𝐴𝑢𝐵) ∧ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)))
3725, 26, 28, 31, 36cbvoprab12 6009 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} = {⟨⟨𝑡, 𝑢⟩, 𝑧⟩ ∣ ((𝑡𝐴𝑢𝐵) ∧ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)}
3824, 37eqtr4i 2228 1 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wnf 1482  [wsb 1784  wcel 2175  cop 3635  {copab 4103   × cxp 4671  {coprab 5935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fo 5274  df-fv 5276  df-oprab 5938  df-1st 6216  df-2nd 6217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator