ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzodifsumelfzo GIF version

Theorem elfzodifsumelfzo 10136
Description: If an integer is in a half-open range of nonnegative integers with a difference as upper bound, the sum of the integer with the subtrahend of the difference is in the a half-open range of nonnegative integers containing the minuend of the difference. (Contributed by AV, 13-Nov-2018.)
Assertion
Ref Expression
elfzodifsumelfzo ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑃)) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃)))

Proof of Theorem elfzodifsumelfzo
StepHypRef Expression
1 elfz2nn0 10047 . . 3 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
2 elfz2nn0 10047 . . . . 5 (𝑁 ∈ (0...𝑃) ↔ (𝑁 ∈ ℕ0𝑃 ∈ ℕ0𝑁𝑃))
3 elfzo0 10117 . . . . . . . 8 (𝐼 ∈ (0..^(𝑁𝑀)) ↔ (𝐼 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝐼 < (𝑁𝑀)))
4 nn0z 9211 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
5 nn0z 9211 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
6 znnsub 9242 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
74, 5, 6syl2an 287 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
8 simpr 109 . . . . . . . . . . . . . . . 16 ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℕ0)
9 simpll 519 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℕ0)
10 nn0addcl 9149 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐼 + 𝑀) ∈ ℕ0)
118, 9, 10syl2anr 288 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → (𝐼 + 𝑀) ∈ ℕ0)
1211adantr 274 . . . . . . . . . . . . . 14 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → (𝐼 + 𝑀) ∈ ℕ0)
13 0red 7900 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ∈ ℝ)
14 nn0re 9123 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
1514adantr 274 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
16 nn0re 9123 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
1716adantl 275 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
1813, 15, 173jca 1167 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
1918adantr 274 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
20 nn0ge0 9139 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
2120adantr 274 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ 𝑀)
2221anim1i 338 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → (0 ≤ 𝑀𝑀 < 𝑁))
23 lelttr 7987 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑀𝑀 < 𝑁) → 0 < 𝑁))
2419, 22, 23sylc 62 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 0 < 𝑁)
2524ex 114 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 → 0 < 𝑁))
26 0red 7900 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ∈ ℝ)
2716adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
28 nn0re 9123 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ0𝑃 ∈ ℝ)
2928adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ)
30 ltletr 7988 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((0 < 𝑁𝑁𝑃) → 0 < 𝑃))
3126, 27, 29, 30syl3anc 1228 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 < 𝑁𝑁𝑃) → 0 < 𝑃))
32 nn0z 9211 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ0𝑃 ∈ ℤ)
33 elnnz 9201 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℕ ↔ (𝑃 ∈ ℤ ∧ 0 < 𝑃))
3433simplbi2 383 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℤ → (0 < 𝑃𝑃 ∈ ℕ))
3532, 34syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℕ0 → (0 < 𝑃𝑃 ∈ ℕ))
3635adantr 274 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑃𝑃 ∈ ℕ))
3731, 36syld 45 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 < 𝑁𝑁𝑃) → 𝑃 ∈ ℕ))
3837exp4b 365 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (0 < 𝑁 → (𝑁𝑃𝑃 ∈ ℕ))))
3938com24 87 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℕ0 → (𝑁𝑃 → (0 < 𝑁 → (𝑁 ∈ ℕ0𝑃 ∈ ℕ))))
4039imp 123 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℕ0𝑁𝑃) → (0 < 𝑁 → (𝑁 ∈ ℕ0𝑃 ∈ ℕ)))
4140com13 80 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (0 < 𝑁 → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ)))
4241adantl 275 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑁 → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ)))
4325, 42syld 45 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ)))
4443imp 123 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ))
4544adantr 274 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ))
4645imp 123 . . . . . . . . . . . . . 14 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → 𝑃 ∈ ℕ)
47 nn0re 9123 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
4847adantl 275 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ)
4915adantr 274 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℝ)
50 readdcl 7879 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐼 + 𝑀) ∈ ℝ)
5148, 49, 50syl2anr 288 . . . . . . . . . . . . . . . . . . 19 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → (𝐼 + 𝑀) ∈ ℝ)
5251adantr 274 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → (𝐼 + 𝑀) ∈ ℝ)
5317adantr 274 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℝ)
5453adantr 274 . . . . . . . . . . . . . . . . . . 19 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → 𝑁 ∈ ℝ)
5554adantr 274 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → 𝑁 ∈ ℝ)
5628adantl 275 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → 𝑃 ∈ ℝ)
5752, 55, 563jca 1167 . . . . . . . . . . . . . . . . 17 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → ((𝐼 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ))
5857adantr 274 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → ((𝐼 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ))
5947adantl 275 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ)
6015adantr 274 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → 𝑀 ∈ ℝ)
6117adantr 274 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
6259, 60, 61ltaddsubd 8443 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 𝑀) < 𝑁𝐼 < (𝑁𝑀)))
6362exbiri 380 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐼 ∈ ℕ0 → (𝐼 < (𝑁𝑀) → (𝐼 + 𝑀) < 𝑁)))
6463com23 78 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → (𝐼 + 𝑀) < 𝑁)))
6564impd 252 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 𝑀) < 𝑁))
6665adantr 274 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 𝑀) < 𝑁))
6766imp 123 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → (𝐼 + 𝑀) < 𝑁)
6867adantr 274 . . . . . . . . . . . . . . . . 17 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → (𝐼 + 𝑀) < 𝑁)
6968anim1i 338 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → ((𝐼 + 𝑀) < 𝑁𝑁𝑃))
70 ltletr 7988 . . . . . . . . . . . . . . . 16 (((𝐼 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (((𝐼 + 𝑀) < 𝑁𝑁𝑃) → (𝐼 + 𝑀) < 𝑃))
7158, 69, 70sylc 62 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → (𝐼 + 𝑀) < 𝑃)
7271anasss 397 . . . . . . . . . . . . . 14 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → (𝐼 + 𝑀) < 𝑃)
73 elfzo0 10117 . . . . . . . . . . . . . 14 ((𝐼 + 𝑀) ∈ (0..^𝑃) ↔ ((𝐼 + 𝑀) ∈ ℕ0𝑃 ∈ ℕ ∧ (𝐼 + 𝑀) < 𝑃))
7412, 46, 72, 73syl3anbrc 1171 . . . . . . . . . . . . 13 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → (𝐼 + 𝑀) ∈ (0..^𝑃))
7574exp53 375 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
767, 75sylbird 169 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁𝑀) ∈ ℕ → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
77763adant3 1007 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑁𝑀) ∈ ℕ → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
7877com14 88 . . . . . . . . 9 (𝐼 ∈ ℕ0 → ((𝑁𝑀) ∈ ℕ → (𝐼 < (𝑁𝑀) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
79783imp 1183 . . . . . . . 8 ((𝐼 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝐼 < (𝑁𝑀)) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
803, 79sylbi 120 . . . . . . 7 (𝐼 ∈ (0..^(𝑁𝑀)) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
8180com13 80 . . . . . 6 ((𝑃 ∈ ℕ0𝑁𝑃) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
82813adant1 1005 . . . . 5 ((𝑁 ∈ ℕ0𝑃 ∈ ℕ0𝑁𝑃) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
832, 82sylbi 120 . . . 4 (𝑁 ∈ (0...𝑃) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
8483com12 30 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑁 ∈ (0...𝑃) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
851, 84sylbi 120 . 2 (𝑀 ∈ (0...𝑁) → (𝑁 ∈ (0...𝑃) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
8685imp 123 1 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑃)) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968  wcel 2136   class class class wbr 3982  (class class class)co 5842  cr 7752  0cc0 7753   + caddc 7756   < clt 7933  cle 7934  cmin 8069  cn 8857  0cn0 9114  cz 9191  ...cfz 9944  ..^cfzo 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078
This theorem is referenced by:  elfzom1elp1fzo  10137
  Copyright terms: Public domain W3C validator