ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzodifsumelfzo GIF version

Theorem elfzodifsumelfzo 9946
Description: If an integer is in a half-open range of nonnegative integers with a difference as upper bound, the sum of the integer with the subtrahend of the difference is in the a half-open range of nonnegative integers containing the minuend of the difference. (Contributed by AV, 13-Nov-2018.)
Assertion
Ref Expression
elfzodifsumelfzo ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑃)) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃)))

Proof of Theorem elfzodifsumelfzo
StepHypRef Expression
1 elfz2nn0 9860 . . 3 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
2 elfz2nn0 9860 . . . . 5 (𝑁 ∈ (0...𝑃) ↔ (𝑁 ∈ ℕ0𝑃 ∈ ℕ0𝑁𝑃))
3 elfzo0 9927 . . . . . . . 8 (𝐼 ∈ (0..^(𝑁𝑀)) ↔ (𝐼 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝐼 < (𝑁𝑀)))
4 nn0z 9042 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
5 nn0z 9042 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
6 znnsub 9073 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
74, 5, 6syl2an 287 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
8 simpr 109 . . . . . . . . . . . . . . . 16 ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℕ0)
9 simpll 503 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℕ0)
10 nn0addcl 8980 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐼 + 𝑀) ∈ ℕ0)
118, 9, 10syl2anr 288 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → (𝐼 + 𝑀) ∈ ℕ0)
1211adantr 274 . . . . . . . . . . . . . 14 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → (𝐼 + 𝑀) ∈ ℕ0)
13 0red 7735 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ∈ ℝ)
14 nn0re 8954 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
1514adantr 274 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
16 nn0re 8954 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
1716adantl 275 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
1813, 15, 173jca 1146 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
1918adantr 274 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
20 nn0ge0 8970 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
2120adantr 274 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ 𝑀)
2221anim1i 338 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → (0 ≤ 𝑀𝑀 < 𝑁))
23 lelttr 7820 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑀𝑀 < 𝑁) → 0 < 𝑁))
2419, 22, 23sylc 62 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 0 < 𝑁)
2524ex 114 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 → 0 < 𝑁))
26 0red 7735 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ∈ ℝ)
2716adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
28 nn0re 8954 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ0𝑃 ∈ ℝ)
2928adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ)
30 ltletr 7821 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((0 < 𝑁𝑁𝑃) → 0 < 𝑃))
3126, 27, 29, 30syl3anc 1201 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 < 𝑁𝑁𝑃) → 0 < 𝑃))
32 nn0z 9042 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ0𝑃 ∈ ℤ)
33 elnnz 9032 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℕ ↔ (𝑃 ∈ ℤ ∧ 0 < 𝑃))
3433simplbi2 382 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℤ → (0 < 𝑃𝑃 ∈ ℕ))
3532, 34syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℕ0 → (0 < 𝑃𝑃 ∈ ℕ))
3635adantr 274 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑃𝑃 ∈ ℕ))
3731, 36syld 45 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 < 𝑁𝑁𝑃) → 𝑃 ∈ ℕ))
3837exp4b 364 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (0 < 𝑁 → (𝑁𝑃𝑃 ∈ ℕ))))
3938com24 87 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℕ0 → (𝑁𝑃 → (0 < 𝑁 → (𝑁 ∈ ℕ0𝑃 ∈ ℕ))))
4039imp 123 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℕ0𝑁𝑃) → (0 < 𝑁 → (𝑁 ∈ ℕ0𝑃 ∈ ℕ)))
4140com13 80 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (0 < 𝑁 → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ)))
4241adantl 275 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑁 → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ)))
4325, 42syld 45 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ)))
4443imp 123 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ))
4544adantr 274 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ))
4645imp 123 . . . . . . . . . . . . . 14 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → 𝑃 ∈ ℕ)
47 nn0re 8954 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
4847adantl 275 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ)
4915adantr 274 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℝ)
50 readdcl 7714 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐼 + 𝑀) ∈ ℝ)
5148, 49, 50syl2anr 288 . . . . . . . . . . . . . . . . . . 19 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → (𝐼 + 𝑀) ∈ ℝ)
5251adantr 274 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → (𝐼 + 𝑀) ∈ ℝ)
5317adantr 274 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℝ)
5453adantr 274 . . . . . . . . . . . . . . . . . . 19 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → 𝑁 ∈ ℝ)
5554adantr 274 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → 𝑁 ∈ ℝ)
5628adantl 275 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → 𝑃 ∈ ℝ)
5752, 55, 563jca 1146 . . . . . . . . . . . . . . . . 17 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → ((𝐼 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ))
5857adantr 274 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → ((𝐼 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ))
5947adantl 275 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ)
6015adantr 274 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → 𝑀 ∈ ℝ)
6117adantr 274 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
6259, 60, 61ltaddsubd 8275 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 𝑀) < 𝑁𝐼 < (𝑁𝑀)))
6362exbiri 379 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐼 ∈ ℕ0 → (𝐼 < (𝑁𝑀) → (𝐼 + 𝑀) < 𝑁)))
6463com23 78 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → (𝐼 + 𝑀) < 𝑁)))
6564impd 252 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 𝑀) < 𝑁))
6665adantr 274 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 𝑀) < 𝑁))
6766imp 123 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → (𝐼 + 𝑀) < 𝑁)
6867adantr 274 . . . . . . . . . . . . . . . . 17 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → (𝐼 + 𝑀) < 𝑁)
6968anim1i 338 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → ((𝐼 + 𝑀) < 𝑁𝑁𝑃))
70 ltletr 7821 . . . . . . . . . . . . . . . 16 (((𝐼 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (((𝐼 + 𝑀) < 𝑁𝑁𝑃) → (𝐼 + 𝑀) < 𝑃))
7158, 69, 70sylc 62 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → (𝐼 + 𝑀) < 𝑃)
7271anasss 396 . . . . . . . . . . . . . 14 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → (𝐼 + 𝑀) < 𝑃)
73 elfzo0 9927 . . . . . . . . . . . . . 14 ((𝐼 + 𝑀) ∈ (0..^𝑃) ↔ ((𝐼 + 𝑀) ∈ ℕ0𝑃 ∈ ℕ ∧ (𝐼 + 𝑀) < 𝑃))
7412, 46, 72, 73syl3anbrc 1150 . . . . . . . . . . . . 13 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → (𝐼 + 𝑀) ∈ (0..^𝑃))
7574exp53 374 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
767, 75sylbird 169 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁𝑀) ∈ ℕ → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
77763adant3 986 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑁𝑀) ∈ ℕ → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
7877com14 88 . . . . . . . . 9 (𝐼 ∈ ℕ0 → ((𝑁𝑀) ∈ ℕ → (𝐼 < (𝑁𝑀) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
79783imp 1160 . . . . . . . 8 ((𝐼 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝐼 < (𝑁𝑀)) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
803, 79sylbi 120 . . . . . . 7 (𝐼 ∈ (0..^(𝑁𝑀)) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
8180com13 80 . . . . . 6 ((𝑃 ∈ ℕ0𝑁𝑃) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
82813adant1 984 . . . . 5 ((𝑁 ∈ ℕ0𝑃 ∈ ℕ0𝑁𝑃) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
832, 82sylbi 120 . . . 4 (𝑁 ∈ (0...𝑃) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
8483com12 30 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑁 ∈ (0...𝑃) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
851, 84sylbi 120 . 2 (𝑀 ∈ (0...𝑁) → (𝑁 ∈ (0...𝑃) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
8685imp 123 1 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑃)) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 947  wcel 1465   class class class wbr 3899  (class class class)co 5742  cr 7587  0cc0 7588   + caddc 7591   < clt 7768  cle 7769  cmin 7901  cn 8688  0cn0 8945  cz 9022  ...cfz 9758  ..^cfzo 9887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023  df-uz 9295  df-fz 9759  df-fzo 9888
This theorem is referenced by:  elfzom1elp1fzo  9947
  Copyright terms: Public domain W3C validator