ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgass2 GIF version

Theorem mulgass2 13554
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mulgass2.b 𝐵 = (Base‘𝑅)
mulgass2.m · = (.g𝑅)
mulgass2.t × = (.r𝑅)
Assertion
Ref Expression
mulgass2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))

Proof of Theorem mulgass2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5925 . . . . . . 7 (𝑥 = 0 → (𝑥 · 𝑋) = (0 · 𝑋))
21oveq1d 5933 . . . . . 6 (𝑥 = 0 → ((𝑥 · 𝑋) × 𝑌) = ((0 · 𝑋) × 𝑌))
3 oveq1 5925 . . . . . 6 (𝑥 = 0 → (𝑥 · (𝑋 × 𝑌)) = (0 · (𝑋 × 𝑌)))
42, 3eqeq12d 2208 . . . . 5 (𝑥 = 0 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((0 · 𝑋) × 𝑌) = (0 · (𝑋 × 𝑌))))
5 oveq1 5925 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋))
65oveq1d 5933 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 · 𝑋) × 𝑌) = ((𝑦 · 𝑋) × 𝑌))
7 oveq1 5925 . . . . . 6 (𝑥 = 𝑦 → (𝑥 · (𝑋 × 𝑌)) = (𝑦 · (𝑋 × 𝑌)))
86, 7eqeq12d 2208 . . . . 5 (𝑥 = 𝑦 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌))))
9 oveq1 5925 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥 · 𝑋) = ((𝑦 + 1) · 𝑋))
109oveq1d 5933 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥 · 𝑋) × 𝑌) = (((𝑦 + 1) · 𝑋) × 𝑌))
11 oveq1 5925 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑥 · (𝑋 × 𝑌)) = ((𝑦 + 1) · (𝑋 × 𝑌)))
1210, 11eqeq12d 2208 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌))))
13 oveq1 5925 . . . . . . 7 (𝑥 = -𝑦 → (𝑥 · 𝑋) = (-𝑦 · 𝑋))
1413oveq1d 5933 . . . . . 6 (𝑥 = -𝑦 → ((𝑥 · 𝑋) × 𝑌) = ((-𝑦 · 𝑋) × 𝑌))
15 oveq1 5925 . . . . . 6 (𝑥 = -𝑦 → (𝑥 · (𝑋 × 𝑌)) = (-𝑦 · (𝑋 × 𝑌)))
1614, 15eqeq12d 2208 . . . . 5 (𝑥 = -𝑦 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌))))
17 oveq1 5925 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 · 𝑋) = (𝑁 · 𝑋))
1817oveq1d 5933 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 · 𝑋) × 𝑌) = ((𝑁 · 𝑋) × 𝑌))
19 oveq1 5925 . . . . . 6 (𝑥 = 𝑁 → (𝑥 · (𝑋 × 𝑌)) = (𝑁 · (𝑋 × 𝑌)))
2018, 19eqeq12d 2208 . . . . 5 (𝑥 = 𝑁 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))
21 mulgass2.b . . . . . . . 8 𝐵 = (Base‘𝑅)
22 mulgass2.t . . . . . . . 8 × = (.r𝑅)
23 eqid 2193 . . . . . . . 8 (0g𝑅) = (0g𝑅)
2421, 22, 23ringlz 13539 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ((0g𝑅) × 𝑌) = (0g𝑅))
25243adant3 1019 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → ((0g𝑅) × 𝑌) = (0g𝑅))
26 simp3 1001 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → 𝑋𝐵)
27 mulgass2.m . . . . . . . . 9 · = (.g𝑅)
2821, 23, 27mulg0 13195 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝑅))
2926, 28syl 14 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (0 · 𝑋) = (0g𝑅))
3029oveq1d 5933 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → ((0 · 𝑋) × 𝑌) = ((0g𝑅) × 𝑌))
3121, 22ringcl 13509 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 × 𝑌) ∈ 𝐵)
32313com23 1211 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑋 × 𝑌) ∈ 𝐵)
3321, 23, 27mulg0 13195 . . . . . . 7 ((𝑋 × 𝑌) ∈ 𝐵 → (0 · (𝑋 × 𝑌)) = (0g𝑅))
3432, 33syl 14 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (0 · (𝑋 × 𝑌)) = (0g𝑅))
3525, 30, 343eqtr4d 2236 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → ((0 · 𝑋) × 𝑌) = (0 · (𝑋 × 𝑌)))
36 oveq1 5925 . . . . . . 7 (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)))
37 simpl1 1002 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑅 ∈ Ring)
38 ringgrp 13497 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
3937, 38syl 14 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑅 ∈ Grp)
40 nn0z 9337 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
4140adantl 277 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
4226adantr 276 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑋𝐵)
43 eqid 2193 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
4421, 27, 43mulgp1 13225 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)𝑋))
4539, 41, 42, 44syl3anc 1249 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)𝑋))
4645oveq1d 5933 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) · 𝑋) × 𝑌) = (((𝑦 · 𝑋)(+g𝑅)𝑋) × 𝑌))
47383ad2ant1 1020 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → 𝑅 ∈ Grp)
4847adantr 276 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑅 ∈ Grp)
4921, 27mulgcl 13209 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
5048, 41, 42, 49syl3anc 1249 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (𝑦 · 𝑋) ∈ 𝐵)
51 simpl2 1003 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑌𝐵)
5221, 43, 22ringdir 13515 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑦 · 𝑋) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑦 · 𝑋)(+g𝑅)𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
5337, 50, 42, 51, 52syl13anc 1251 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 · 𝑋)(+g𝑅)𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
5446, 53eqtrd 2226 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) · 𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
5532adantr 276 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (𝑋 × 𝑌) ∈ 𝐵)
5621, 27, 43mulgp1 13225 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝑋 × 𝑌) ∈ 𝐵) → ((𝑦 + 1) · (𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)))
5739, 41, 55, 56syl3anc 1249 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · (𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)))
5854, 57eqeq12d 2208 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → ((((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌)) ↔ (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌))))
5936, 58imbitrrid 156 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌))))
6059ex 115 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑦 ∈ ℕ0 → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌)))))
61 fveq2 5554 . . . . . . 7 (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌))))
6247adantr 276 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑅 ∈ Grp)
63 nnz 9336 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
6463adantl 277 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ)
6526adantr 276 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑋𝐵)
66 eqid 2193 . . . . . . . . . . . 12 (invg𝑅) = (invg𝑅)
6721, 27, 66mulgneg 13210 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) = ((invg𝑅)‘(𝑦 · 𝑋)))
6862, 64, 65, 67syl3anc 1249 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (-𝑦 · 𝑋) = ((invg𝑅)‘(𝑦 · 𝑋)))
6968oveq1d 5933 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → ((-𝑦 · 𝑋) × 𝑌) = (((invg𝑅)‘(𝑦 · 𝑋)) × 𝑌))
70 simpl1 1002 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑅 ∈ Ring)
7162, 64, 65, 49syl3anc 1249 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (𝑦 · 𝑋) ∈ 𝐵)
72 simpl2 1003 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑌𝐵)
7321, 22, 66, 70, 71, 72ringmneg1 13549 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (((invg𝑅)‘(𝑦 · 𝑋)) × 𝑌) = ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)))
7469, 73eqtrd 2226 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → ((-𝑦 · 𝑋) × 𝑌) = ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)))
7532adantr 276 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (𝑋 × 𝑌) ∈ 𝐵)
7621, 27, 66mulgneg 13210 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝑋 × 𝑌) ∈ 𝐵) → (-𝑦 · (𝑋 × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌))))
7762, 64, 75, 76syl3anc 1249 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (-𝑦 · (𝑋 × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌))))
7874, 77eqeq12d 2208 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌)) ↔ ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌)))))
7961, 78imbitrrid 156 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → ((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌))))
8079ex 115 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑦 ∈ ℕ → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → ((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌)))))
814, 8, 12, 16, 20, 35, 60, 80zindd 9435 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))
82813exp 1204 . . 3 (𝑅 ∈ Ring → (𝑌𝐵 → (𝑋𝐵 → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))))
8382com24 87 . 2 (𝑅 ∈ Ring → (𝑁 ∈ ℤ → (𝑋𝐵 → (𝑌𝐵 → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))))
84833imp2 1224 1 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  cfv 5254  (class class class)co 5918  0cc0 7872  1c1 7873   + caddc 7875  -cneg 8191  cn 8982  0cn0 9240  cz 9317  Basecbs 12618  +gcplusg 12695  .rcmulr 12696  0gc0g 12867  Grpcgrp 13072  invgcminusg 13073  .gcmg 13189  Ringcrg 13492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-3 9042  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-mulg 13190  df-mgp 13417  df-ur 13456  df-ring 13494
This theorem is referenced by:  mulgass3  13581  mulgrhm  14097
  Copyright terms: Public domain W3C validator