ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundmen GIF version

Theorem fundmen 6708
Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 28-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypothesis
Ref Expression
fundmen.1 𝐹 ∈ V
Assertion
Ref Expression
fundmen (Fun 𝐹 → dom 𝐹𝐹)

Proof of Theorem fundmen
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fundmen.1 . . . 4 𝐹 ∈ V
21dmex 4813 . . 3 dom 𝐹 ∈ V
32a1i 9 . 2 (Fun 𝐹 → dom 𝐹 ∈ V)
41a1i 9 . 2 (Fun 𝐹𝐹 ∈ V)
5 funfvop 5540 . . 3 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
65ex 114 . 2 (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹))
7 funrel 5148 . . 3 (Fun 𝐹 → Rel 𝐹)
8 elreldm 4773 . . . 4 ((Rel 𝐹𝑦𝐹) → 𝑦 ∈ dom 𝐹)
98ex 114 . . 3 (Rel 𝐹 → (𝑦𝐹 𝑦 ∈ dom 𝐹))
107, 9syl 14 . 2 (Fun 𝐹 → (𝑦𝐹 𝑦 ∈ dom 𝐹))
11 df-rel 4554 . . . . . . . . 9 (Rel 𝐹𝐹 ⊆ (V × V))
127, 11sylib 121 . . . . . . . 8 (Fun 𝐹𝐹 ⊆ (V × V))
1312sselda 3102 . . . . . . 7 ((Fun 𝐹𝑦𝐹) → 𝑦 ∈ (V × V))
14 elvv 4609 . . . . . . 7 (𝑦 ∈ (V × V) ↔ ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩)
1513, 14sylib 121 . . . . . 6 ((Fun 𝐹𝑦𝐹) → ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩)
16 inteq 3782 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, 𝑤⟩ → 𝑦 = 𝑧, 𝑤⟩)
1716inteqd 3784 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨𝑧, 𝑤⟩ → 𝑦 = 𝑧, 𝑤⟩)
18 vex 2692 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
19 vex 2692 . . . . . . . . . . . . . . . . 17 𝑤 ∈ V
2018, 19op1stb 4407 . . . . . . . . . . . . . . . 16 𝑧, 𝑤⟩ = 𝑧
2117, 20eqtrdi 2189 . . . . . . . . . . . . . . 15 (𝑦 = ⟨𝑧, 𝑤⟩ → 𝑦 = 𝑧)
22 eqeq1 2147 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥 = 𝑧 𝑦 = 𝑧))
2321, 22syl5ibr 155 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑦 = ⟨𝑧, 𝑤⟩ → 𝑥 = 𝑧))
24 opeq1 3713 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩)
2523, 24syl6 33 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑦 = ⟨𝑧, 𝑤⟩ → ⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩))
2625imp 123 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩) → ⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩)
27 eqeq2 2150 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩ → (𝑦 = ⟨𝑥, 𝑤⟩ ↔ 𝑦 = ⟨𝑧, 𝑤⟩))
2827biimprcd 159 . . . . . . . . . . . . 13 (𝑦 = ⟨𝑧, 𝑤⟩ → (⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩ → 𝑦 = ⟨𝑥, 𝑤⟩))
2928adantl 275 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩) → (⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩ → 𝑦 = ⟨𝑥, 𝑤⟩))
3026, 29mpd 13 . . . . . . . . . . 11 ((𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩) → 𝑦 = ⟨𝑥, 𝑤⟩)
3130ancoms 266 . . . . . . . . . 10 ((𝑦 = ⟨𝑧, 𝑤⟩ ∧ 𝑥 = 𝑦) → 𝑦 = ⟨𝑥, 𝑤⟩)
3231adantl 275 . . . . . . . . 9 (((Fun 𝐹𝑦𝐹) ∧ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ 𝑥 = 𝑦)) → 𝑦 = ⟨𝑥, 𝑤⟩)
3330eleq1d 2209 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩) → (𝑦𝐹 ↔ ⟨𝑥, 𝑤⟩ ∈ 𝐹))
3433adantl 275 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ (𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩)) → (𝑦𝐹 ↔ ⟨𝑥, 𝑤⟩ ∈ 𝐹))
35 funopfv 5469 . . . . . . . . . . . . . . 15 (Fun 𝐹 → (⟨𝑥, 𝑤⟩ ∈ 𝐹 → (𝐹𝑥) = 𝑤))
3635adantr 274 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ (𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩)) → (⟨𝑥, 𝑤⟩ ∈ 𝐹 → (𝐹𝑥) = 𝑤))
3734, 36sylbid 149 . . . . . . . . . . . . 13 ((Fun 𝐹 ∧ (𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩)) → (𝑦𝐹 → (𝐹𝑥) = 𝑤))
3837exp32 363 . . . . . . . . . . . 12 (Fun 𝐹 → (𝑥 = 𝑦 → (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦𝐹 → (𝐹𝑥) = 𝑤))))
3938com24 87 . . . . . . . . . . 11 (Fun 𝐹 → (𝑦𝐹 → (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑥 = 𝑦 → (𝐹𝑥) = 𝑤))))
4039imp43 353 . . . . . . . . . 10 (((Fun 𝐹𝑦𝐹) ∧ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ 𝑥 = 𝑦)) → (𝐹𝑥) = 𝑤)
4140opeq2d 3720 . . . . . . . . 9 (((Fun 𝐹𝑦𝐹) ∧ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ 𝑥 = 𝑦)) → ⟨𝑥, (𝐹𝑥)⟩ = ⟨𝑥, 𝑤⟩)
4232, 41eqtr4d 2176 . . . . . . . 8 (((Fun 𝐹𝑦𝐹) ∧ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ 𝑥 = 𝑦)) → 𝑦 = ⟨𝑥, (𝐹𝑥)⟩)
4342exp32 363 . . . . . . 7 ((Fun 𝐹𝑦𝐹) → (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑥 = 𝑦𝑦 = ⟨𝑥, (𝐹𝑥)⟩)))
4443exlimdvv 1870 . . . . . 6 ((Fun 𝐹𝑦𝐹) → (∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩ → (𝑥 = 𝑦𝑦 = ⟨𝑥, (𝐹𝑥)⟩)))
4515, 44mpd 13 . . . . 5 ((Fun 𝐹𝑦𝐹) → (𝑥 = 𝑦𝑦 = ⟨𝑥, (𝐹𝑥)⟩))
4645adantrl 470 . . . 4 ((Fun 𝐹 ∧ (𝑥 ∈ dom 𝐹𝑦𝐹)) → (𝑥 = 𝑦𝑦 = ⟨𝑥, (𝐹𝑥)⟩))
47 inteq 3782 . . . . . . . . 9 (𝑦 = ⟨𝑥, (𝐹𝑥)⟩ → 𝑦 = 𝑥, (𝐹𝑥)⟩)
4847inteqd 3784 . . . . . . . 8 (𝑦 = ⟨𝑥, (𝐹𝑥)⟩ → 𝑦 = 𝑥, (𝐹𝑥)⟩)
4948adantl 275 . . . . . . 7 (((Fun 𝐹𝑥 ∈ dom 𝐹) ∧ 𝑦 = ⟨𝑥, (𝐹𝑥)⟩) → 𝑦 = 𝑥, (𝐹𝑥)⟩)
50 vex 2692 . . . . . . . . 9 𝑥 ∈ V
51 funfvex 5446 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
52 op1stbg 4408 . . . . . . . . 9 ((𝑥 ∈ V ∧ (𝐹𝑥) ∈ V) → 𝑥, (𝐹𝑥)⟩ = 𝑥)
5350, 51, 52sylancr 411 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → 𝑥, (𝐹𝑥)⟩ = 𝑥)
5453adantr 274 . . . . . . 7 (((Fun 𝐹𝑥 ∈ dom 𝐹) ∧ 𝑦 = ⟨𝑥, (𝐹𝑥)⟩) → 𝑥, (𝐹𝑥)⟩ = 𝑥)
5549, 54eqtr2d 2174 . . . . . 6 (((Fun 𝐹𝑥 ∈ dom 𝐹) ∧ 𝑦 = ⟨𝑥, (𝐹𝑥)⟩) → 𝑥 = 𝑦)
5655ex 114 . . . . 5 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝑦 = ⟨𝑥, (𝐹𝑥)⟩ → 𝑥 = 𝑦))
5756adantrr 471 . . . 4 ((Fun 𝐹 ∧ (𝑥 ∈ dom 𝐹𝑦𝐹)) → (𝑦 = ⟨𝑥, (𝐹𝑥)⟩ → 𝑥 = 𝑦))
5846, 57impbid 128 . . 3 ((Fun 𝐹 ∧ (𝑥 ∈ dom 𝐹𝑦𝐹)) → (𝑥 = 𝑦𝑦 = ⟨𝑥, (𝐹𝑥)⟩))
5958ex 114 . 2 (Fun 𝐹 → ((𝑥 ∈ dom 𝐹𝑦𝐹) → (𝑥 = 𝑦𝑦 = ⟨𝑥, (𝐹𝑥)⟩)))
603, 4, 6, 10, 59en3d 6671 1 (Fun 𝐹 → dom 𝐹𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wex 1469  wcel 1481  Vcvv 2689  wss 3076  cop 3535   cint 3779   class class class wbr 3937   × cxp 4545  dom cdm 4547  Rel wrel 4552  Fun wfun 5125  cfv 5131  cen 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-en 6643
This theorem is referenced by:  fundmeng  6709
  Copyright terms: Public domain W3C validator