ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvjust GIF version

Theorem cvjust 2201
Description: Every set is a class. Proposition 4.9 of [TakeutiZaring] p. 13. This theorem shows that a setvar variable can be expressed as a class abstraction. This provides a motivation for the class syntax construction cv 1372, which allows us to substitute a setvar variable for a class variable. See also cab 2192 and df-clab 2193. Note that this is not a rigorous justification, because cv 1372 is used as part of the proof of this theorem, but a careful argument can be made outside of the formalism of Metamath, for example as is done in Chapter 4 of Takeuti and Zaring. See also the discussion under the definition of class in [Jech] p. 4 showing that "Every set can be considered to be a class." (Contributed by NM, 7-Nov-2006.)
Assertion
Ref Expression
cvjust 𝑥 = {𝑦𝑦𝑥}
Distinct variable group:   𝑥,𝑦

Proof of Theorem cvjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2200 . 2 (𝑥 = {𝑦𝑦𝑥} ↔ ∀𝑧(𝑧𝑥𝑧 ∈ {𝑦𝑦𝑥}))
2 df-clab 2193 . . 3 (𝑧 ∈ {𝑦𝑦𝑥} ↔ [𝑧 / 𝑦]𝑦𝑥)
3 elsb1 2184 . . 3 ([𝑧 / 𝑦]𝑦𝑥𝑧𝑥)
42, 3bitr2i 185 . 2 (𝑧𝑥𝑧 ∈ {𝑦𝑦𝑥})
51, 4mpgbir 1477 1 𝑥 = {𝑦𝑦𝑥}
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  [wsb 1786  wcel 2177  {cab 2192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator