![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cvjust | GIF version |
Description: Every set is a class. Proposition 4.9 of [TakeutiZaring] p. 13. This theorem shows that a setvar variable can be expressed as a class abstraction. This provides a motivation for the class syntax construction cv 1363, which allows us to substitute a setvar variable for a class variable. See also cab 2179 and df-clab 2180. Note that this is not a rigorous justification, because cv 1363 is used as part of the proof of this theorem, but a careful argument can be made outside of the formalism of Metamath, for example as is done in Chapter 4 of Takeuti and Zaring. See also the discussion under the definition of class in [Jech] p. 4 showing that "Every set can be considered to be a class." (Contributed by NM, 7-Nov-2006.) |
Ref | Expression |
---|---|
cvjust | ⊢ 𝑥 = {𝑦 ∣ 𝑦 ∈ 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2187 | . 2 ⊢ (𝑥 = {𝑦 ∣ 𝑦 ∈ 𝑥} ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ {𝑦 ∣ 𝑦 ∈ 𝑥})) | |
2 | df-clab 2180 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝑦 ∈ 𝑥} ↔ [𝑧 / 𝑦]𝑦 ∈ 𝑥) | |
3 | elsb1 2171 | . . 3 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥) | |
4 | 2, 3 | bitr2i 185 | . 2 ⊢ (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ {𝑦 ∣ 𝑦 ∈ 𝑥}) |
5 | 1, 4 | mpgbir 1464 | 1 ⊢ 𝑥 = {𝑦 ∣ 𝑦 ∈ 𝑥} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 [wsb 1773 ∈ wcel 2164 {cab 2179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |