ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvjust GIF version

Theorem cvjust 2165
Description: Every set is a class. Proposition 4.9 of [TakeutiZaring] p. 13. This theorem shows that a setvar variable can be expressed as a class abstraction. This provides a motivation for the class syntax construction cv 1347, which allows us to substitute a setvar variable for a class variable. See also cab 2156 and df-clab 2157. Note that this is not a rigorous justification, because cv 1347 is used as part of the proof of this theorem, but a careful argument can be made outside of the formalism of Metamath, for example as is done in Chapter 4 of Takeuti and Zaring. See also the discussion under the definition of class in [Jech] p. 4 showing that "Every set can be considered to be a class." (Contributed by NM, 7-Nov-2006.)
Assertion
Ref Expression
cvjust 𝑥 = {𝑦𝑦𝑥}
Distinct variable group:   𝑥,𝑦

Proof of Theorem cvjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2164 . 2 (𝑥 = {𝑦𝑦𝑥} ↔ ∀𝑧(𝑧𝑥𝑧 ∈ {𝑦𝑦𝑥}))
2 df-clab 2157 . . 3 (𝑧 ∈ {𝑦𝑦𝑥} ↔ [𝑧 / 𝑦]𝑦𝑥)
3 elsb1 2148 . . 3 ([𝑧 / 𝑦]𝑦𝑥𝑧𝑥)
42, 3bitr2i 184 . 2 (𝑧𝑥𝑧 ∈ {𝑦𝑦𝑥})
51, 4mpgbir 1446 1 𝑥 = {𝑦𝑦𝑥}
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1348  [wsb 1755  wcel 2141  {cab 2156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator