ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfcleq GIF version

Theorem dfcleq 2187
Description: The same as df-cleq 2186 with the hypothesis removed using the Axiom of Extensionality ax-ext 2175. (Contributed by NM, 15-Sep-1993.)
Assertion
Ref Expression
dfcleq (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfcleq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-ext 2175 . 2 (∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧)
21df-cleq 2186 1 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1362   = wceq 1364  wcel 2164
This theorem was proved from axioms:  ax-ext 2175
This theorem depends on definitions:  df-cleq 2186
This theorem is referenced by:  cvjust  2188  eqriv  2190  eqrdv  2191  eqcom  2195  eqeq1  2200  eleq2  2257  cleqh  2293  abbi  2307  nfeq  2344  nfeqd  2351  cleqf  2361  eqss  3195  ddifstab  3292  ssequn1  3330  eqv  3467  disj3  3500  undif4  3510  vnex  4161  inex1  4164  zfpair2  4240  sucel  4442  uniex2  4468  bj-vprc  15458  bdinex1  15461  bj-zfpair2  15472  bj-uniex2  15478
  Copyright terms: Public domain W3C validator