Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfcleq | GIF version |
Description: The same as df-cleq 2168 with the hypothesis removed using the Axiom of Extensionality ax-ext 2157. (Contributed by NM, 15-Sep-1993.) |
Ref | Expression |
---|---|
dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ext 2157 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) | |
2 | 1 | df-cleq 2168 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wal 1351 = wceq 1353 ∈ wcel 2146 |
This theorem was proved from axioms: ax-ext 2157 |
This theorem depends on definitions: df-cleq 2168 |
This theorem is referenced by: cvjust 2170 eqriv 2172 eqrdv 2173 eqcom 2177 eqeq1 2182 eleq2 2239 cleqh 2275 abbi 2289 nfeq 2325 nfeqd 2332 cleqf 2342 eqss 3168 ddifstab 3265 ssequn1 3303 eqv 3440 disj3 3473 undif4 3483 vnex 4129 inex1 4132 zfpair2 4204 sucel 4404 uniex2 4430 bj-vprc 14208 bdinex1 14211 bj-zfpair2 14222 bj-uniex2 14228 |
Copyright terms: Public domain | W3C validator |