ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfcleq GIF version

Theorem dfcleq 2190
Description: The same as df-cleq 2189 with the hypothesis removed using the Axiom of Extensionality ax-ext 2178. (Contributed by NM, 15-Sep-1993.)
Assertion
Ref Expression
dfcleq (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfcleq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-ext 2178 . 2 (∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧)
21df-cleq 2189 1 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1362   = wceq 1364  wcel 2167
This theorem was proved from axioms:  ax-ext 2178
This theorem depends on definitions:  df-cleq 2189
This theorem is referenced by:  cvjust  2191  eqriv  2193  eqrdv  2194  eqcom  2198  eqeq1  2203  eleq2  2260  cleqh  2296  abbi  2310  nfeq  2347  nfeqd  2354  cleqf  2364  eqss  3198  ddifstab  3295  ssequn1  3333  eqv  3470  disj3  3503  undif4  3513  vnex  4164  inex1  4167  zfpair2  4243  sucel  4445  uniex2  4471  bj-vprc  15542  bdinex1  15545  bj-zfpair2  15556  bj-uniex2  15562
  Copyright terms: Public domain W3C validator