Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfcleq | GIF version |
Description: The same as df-cleq 2158 with the hypothesis removed using the Axiom of Extensionality ax-ext 2147. (Contributed by NM, 15-Sep-1993.) |
Ref | Expression |
---|---|
dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ext 2147 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) | |
2 | 1 | df-cleq 2158 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1341 = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-ext 2147 |
This theorem depends on definitions: df-cleq 2158 |
This theorem is referenced by: cvjust 2160 eqriv 2162 eqrdv 2163 eqcom 2167 eqeq1 2172 eleq2 2230 cleqh 2266 abbi 2280 nfeq 2316 nfeqd 2323 cleqf 2333 eqss 3157 ddifstab 3254 ssequn1 3292 eqv 3428 disj3 3461 undif4 3471 vnex 4113 inex1 4116 zfpair2 4188 sucel 4388 uniex2 4414 bj-vprc 13778 bdinex1 13781 bj-zfpair2 13792 bj-uniex2 13798 |
Copyright terms: Public domain | W3C validator |