ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfcleq GIF version

Theorem dfcleq 2159
Description: The same as df-cleq 2158 with the hypothesis removed using the Axiom of Extensionality ax-ext 2147. (Contributed by NM, 15-Sep-1993.)
Assertion
Ref Expression
dfcleq (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfcleq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-ext 2147 . 2 (∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧)
21df-cleq 2158 1 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1341   = wceq 1343  wcel 2136
This theorem was proved from axioms:  ax-ext 2147
This theorem depends on definitions:  df-cleq 2158
This theorem is referenced by:  cvjust  2160  eqriv  2162  eqrdv  2163  eqcom  2167  eqeq1  2172  eleq2  2230  cleqh  2266  abbi  2280  nfeq  2316  nfeqd  2323  cleqf  2333  eqss  3157  ddifstab  3254  ssequn1  3292  eqv  3428  disj3  3461  undif4  3471  vnex  4113  inex1  4116  zfpair2  4188  sucel  4388  uniex2  4414  bj-vprc  13778  bdinex1  13781  bj-zfpair2  13792  bj-uniex2  13798
  Copyright terms: Public domain W3C validator