![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfcleq | GIF version |
Description: The same as df-cleq 2170 with the hypothesis removed using the Axiom of Extensionality ax-ext 2159. (Contributed by NM, 15-Sep-1993.) |
Ref | Expression |
---|---|
dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ext 2159 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) | |
2 | 1 | df-cleq 2170 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wal 1351 = wceq 1353 ∈ wcel 2148 |
This theorem was proved from axioms: ax-ext 2159 |
This theorem depends on definitions: df-cleq 2170 |
This theorem is referenced by: cvjust 2172 eqriv 2174 eqrdv 2175 eqcom 2179 eqeq1 2184 eleq2 2241 cleqh 2277 abbi 2291 nfeq 2327 nfeqd 2334 cleqf 2344 eqss 3172 ddifstab 3269 ssequn1 3307 eqv 3444 disj3 3477 undif4 3487 vnex 4136 inex1 4139 zfpair2 4212 sucel 4412 uniex2 4438 bj-vprc 14733 bdinex1 14736 bj-zfpair2 14747 bj-uniex2 14753 |
Copyright terms: Public domain | W3C validator |