ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfcleq GIF version

Theorem dfcleq 2223
Description: The same as df-cleq 2222 with the hypothesis removed using the Axiom of Extensionality ax-ext 2211. (Contributed by NM, 15-Sep-1993.)
Assertion
Ref Expression
dfcleq (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfcleq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-ext 2211 . 2 (∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧)
21df-cleq 2222 1 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1393   = wceq 1395  wcel 2200
This theorem was proved from axioms:  ax-ext 2211
This theorem depends on definitions:  df-cleq 2222
This theorem is referenced by:  cvjust  2224  eqriv  2226  eqrdv  2227  eqcom  2231  eqeq1  2236  eleq2  2293  cleqh  2329  abbi  2343  nfeq  2380  nfeqd  2387  cleqf  2397  eqss  3239  ddifstab  3336  ssequn1  3374  eqv  3511  disj3  3544  undif4  3554  vnex  4214  inex1  4217  zfpair2  4293  sucel  4498  uniex2  4524  bj-vprc  16189  bdinex1  16192  bj-zfpair2  16203  bj-uniex2  16209
  Copyright terms: Public domain W3C validator