| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfcleq | GIF version | ||
| Description: The same as df-cleq 2222 with the hypothesis removed using the Axiom of Extensionality ax-ext 2211. (Contributed by NM, 15-Sep-1993.) |
| Ref | Expression |
|---|---|
| dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-ext 2211 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) | |
| 2 | 1 | df-cleq 2222 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1393 = wceq 1395 ∈ wcel 2200 |
| This theorem was proved from axioms: ax-ext 2211 |
| This theorem depends on definitions: df-cleq 2222 |
| This theorem is referenced by: cvjust 2224 eqriv 2226 eqrdv 2227 eqcom 2231 eqeq1 2236 eleq2 2293 cleqh 2329 abbi 2343 nfeq 2380 nfeqd 2387 cleqf 2397 eqss 3239 ddifstab 3336 ssequn1 3374 eqv 3511 disj3 3544 undif4 3554 vnex 4214 inex1 4217 zfpair2 4293 sucel 4498 uniex2 4524 bj-vprc 16189 bdinex1 16192 bj-zfpair2 16203 bj-uniex2 16209 |
| Copyright terms: Public domain | W3C validator |