![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfcleq | GIF version |
Description: The same as df-cleq 2186 with the hypothesis removed using the Axiom of Extensionality ax-ext 2175. (Contributed by NM, 15-Sep-1993.) |
Ref | Expression |
---|---|
dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ext 2175 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) | |
2 | 1 | df-cleq 2186 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2164 |
This theorem was proved from axioms: ax-ext 2175 |
This theorem depends on definitions: df-cleq 2186 |
This theorem is referenced by: cvjust 2188 eqriv 2190 eqrdv 2191 eqcom 2195 eqeq1 2200 eleq2 2257 cleqh 2293 abbi 2307 nfeq 2344 nfeqd 2351 cleqf 2361 eqss 3195 ddifstab 3292 ssequn1 3330 eqv 3467 disj3 3500 undif4 3510 vnex 4161 inex1 4164 zfpair2 4240 sucel 4442 uniex2 4468 bj-vprc 15458 bdinex1 15461 bj-zfpair2 15472 bj-uniex2 15478 |
Copyright terms: Public domain | W3C validator |