| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfcleq | GIF version | ||
| Description: The same as df-cleq 2189 with the hypothesis removed using the Axiom of Extensionality ax-ext 2178. (Contributed by NM, 15-Sep-1993.) |
| Ref | Expression |
|---|---|
| dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-ext 2178 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) | |
| 2 | 1 | df-cleq 2189 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-ext 2178 |
| This theorem depends on definitions: df-cleq 2189 |
| This theorem is referenced by: cvjust 2191 eqriv 2193 eqrdv 2194 eqcom 2198 eqeq1 2203 eleq2 2260 cleqh 2296 abbi 2310 nfeq 2347 nfeqd 2354 cleqf 2364 eqss 3198 ddifstab 3295 ssequn1 3333 eqv 3470 disj3 3503 undif4 3513 vnex 4164 inex1 4167 zfpair2 4243 sucel 4445 uniex2 4471 bj-vprc 15542 bdinex1 15545 bj-zfpair2 15556 bj-uniex2 15562 |
| Copyright terms: Public domain | W3C validator |