ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfcleq GIF version

Theorem dfcleq 2171
Description: The same as df-cleq 2170 with the hypothesis removed using the Axiom of Extensionality ax-ext 2159. (Contributed by NM, 15-Sep-1993.)
Assertion
Ref Expression
dfcleq (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfcleq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-ext 2159 . 2 (∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧)
21df-cleq 2170 1 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1351   = wceq 1353  wcel 2148
This theorem was proved from axioms:  ax-ext 2159
This theorem depends on definitions:  df-cleq 2170
This theorem is referenced by:  cvjust  2172  eqriv  2174  eqrdv  2175  eqcom  2179  eqeq1  2184  eleq2  2241  cleqh  2277  abbi  2291  nfeq  2327  nfeqd  2334  cleqf  2344  eqss  3172  ddifstab  3269  ssequn1  3307  eqv  3444  disj3  3477  undif4  3487  vnex  4136  inex1  4139  zfpair2  4212  sucel  4412  uniex2  4438  bj-vprc  14733  bdinex1  14736  bj-zfpair2  14747  bj-uniex2  14753
  Copyright terms: Public domain W3C validator