| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfcleq | GIF version | ||
| Description: The same as df-cleq 2199 with the hypothesis removed using the Axiom of Extensionality ax-ext 2188. (Contributed by NM, 15-Sep-1993.) |
| Ref | Expression |
|---|---|
| dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-ext 2188 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) | |
| 2 | 1 | df-cleq 2199 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1371 = wceq 1373 ∈ wcel 2177 |
| This theorem was proved from axioms: ax-ext 2188 |
| This theorem depends on definitions: df-cleq 2199 |
| This theorem is referenced by: cvjust 2201 eqriv 2203 eqrdv 2204 eqcom 2208 eqeq1 2213 eleq2 2270 cleqh 2306 abbi 2320 nfeq 2357 nfeqd 2364 cleqf 2374 eqss 3212 ddifstab 3309 ssequn1 3347 eqv 3484 disj3 3517 undif4 3527 vnex 4182 inex1 4185 zfpair2 4261 sucel 4464 uniex2 4490 bj-vprc 15966 bdinex1 15969 bj-zfpair2 15980 bj-uniex2 15986 |
| Copyright terms: Public domain | W3C validator |