| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-cnv | GIF version | ||
| Description: Define the converse of a
class. Definition 9.12 of [Quine] p. 64. The
converse of a binary relation swaps its arguments, i.e., if 𝐴 ∈
V
and 𝐵 ∈ V then (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴), as proven in brcnv 4850
(see df-br 4035 and df-rel 4671 for more on relations). For example,
◡{〈2,
6〉, 〈3, 9〉} = {〈6, 2〉, 〈9, 3〉}.
We use Quine's breve accent (smile) notation. Like Quine, we use it as a prefix, which eliminates the need for parentheses. "Converse" is Quine's terminology. Some authors use a "minus one" exponent and call it "inverse", especially when the argument is a function, although this is not in general a genuine inverse. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-cnv | ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | ccnv 4663 | . 2 class ◡𝐴 |
| 3 | vy | . . . . 5 setvar 𝑦 | |
| 4 | 3 | cv 1363 | . . . 4 class 𝑦 |
| 5 | vx | . . . . 5 setvar 𝑥 | |
| 6 | 5 | cv 1363 | . . . 4 class 𝑥 |
| 7 | 4, 6, 1 | wbr 4034 | . . 3 wff 𝑦𝐴𝑥 |
| 8 | 7, 5, 3 | copab 4094 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} |
| 9 | 2, 8 | wceq 1364 | 1 wff ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} |
| Colors of variables: wff set class |
| This definition is referenced by: cnvss 4840 elcnv 4844 nfcnv 4846 opelcnvg 4847 csbcnvg 4851 cnvco 4852 relcnv 5048 cnvi 5075 cnvun 5076 cnvin 5078 cnvcnv3 5120 |
| Copyright terms: Public domain | W3C validator |