| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-cnv | GIF version | ||
| Description: Define the converse of a
class.  Definition 9.12 of [Quine] p. 64.  The
       converse of a binary relation swaps its arguments, i.e., if 𝐴 ∈
V
       and 𝐵 ∈ V then (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴), as proven in brcnv 4849
       (see df-br 4034 and df-rel 4670 for more on relations).  For example,
       ◡{〈2,
6〉, 〈3, 9〉} = {〈6, 2〉, 〈9, 3〉}.
 We use Quine's breve accent (smile) notation. Like Quine, we use it as a prefix, which eliminates the need for parentheses. "Converse" is Quine's terminology. Some authors use a "minus one" exponent and call it "inverse", especially when the argument is a function, although this is not in general a genuine inverse. (Contributed by NM, 4-Jul-1994.)  | 
| Ref | Expression | 
|---|---|
| df-cnv | ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | ccnv 4662 | . 2 class ◡𝐴 | 
| 3 | vy | . . . . 5 setvar 𝑦 | |
| 4 | 3 | cv 1363 | . . . 4 class 𝑦 | 
| 5 | vx | . . . . 5 setvar 𝑥 | |
| 6 | 5 | cv 1363 | . . . 4 class 𝑥 | 
| 7 | 4, 6, 1 | wbr 4033 | . . 3 wff 𝑦𝐴𝑥 | 
| 8 | 7, 5, 3 | copab 4093 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | 
| 9 | 2, 8 | wceq 1364 | 1 wff ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | 
| Colors of variables: wff set class | 
| This definition is referenced by: cnvss 4839 elcnv 4843 nfcnv 4845 opelcnvg 4846 csbcnvg 4850 cnvco 4851 relcnv 5047 cnvi 5074 cnvun 5075 cnvin 5077 cnvcnv3 5119 | 
| Copyright terms: Public domain | W3C validator |