ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnv GIF version

Theorem relcnv 5043
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.)
Assertion
Ref Expression
relcnv Rel 𝐴

Proof of Theorem relcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 4667 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
21relopabi 4787 1 Rel 𝐴
Colors of variables: wff set class
Syntax hints:   class class class wbr 4029  ccnv 4658  Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667
This theorem is referenced by:  relbrcnvg  5044  eliniseg2  5045  cnvsym  5049  intasym  5050  asymref  5051  cnvopab  5067  cnv0  5069  cnvdif  5072  dfrel2  5116  cnvcnv  5118  cnvsn0  5134  cnvcnvsn  5142  resdm2  5156  coi2  5182  coires1  5183  cnvssrndm  5187  unidmrn  5198  cnvexg  5203  cnviinm  5207  funi  5286  funcnvsn  5299  funcnv2  5314  funcnveq  5317  fcnvres  5437  f1cnvcnv  5470  f1ompt  5709  fliftcnv  5838  cnvf1o  6278  reldmtpos  6306  dmtpos  6309  rntpos  6310  dftpos3  6315  dftpos4  6316  tpostpos  6317  tposf12  6322  ercnv  6608  cnvct  6863  relcnvfi  7000  fsumcnv  11580  fisumcom2  11581  fprodcnv  11768  fprodcom2fi  11769
  Copyright terms: Public domain W3C validator