| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relcnv | GIF version | ||
| Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
| Ref | Expression |
|---|---|
| relcnv | ⊢ Rel ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 4684 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 2 | 1 | relopabi 4804 | 1 ⊢ Rel ◡𝐴 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4045 ◡ccnv 4675 Rel wrel 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4107 df-xp 4682 df-rel 4683 df-cnv 4684 |
| This theorem is referenced by: relbrcnvg 5062 eliniseg2 5063 cnvsym 5067 intasym 5068 asymref 5069 cnvopab 5085 cnv0 5087 cnvdif 5090 dfrel2 5134 cnvcnv 5136 cnvsn0 5152 cnvcnvsn 5160 resdm2 5174 coi2 5200 coires1 5201 cnvssrndm 5205 unidmrn 5216 cnvexg 5221 cnviinm 5225 funi 5304 funcnvsn 5320 funcnv2 5335 funcnveq 5338 fcnvres 5461 f1cnvcnv 5494 f1ompt 5733 fliftcnv 5866 cnvf1o 6313 reldmtpos 6341 dmtpos 6344 rntpos 6345 dftpos3 6350 dftpos4 6351 tpostpos 6352 tposf12 6357 ercnv 6643 cnvct 6903 relcnvfi 7045 fsumcnv 11781 fisumcom2 11782 fprodcnv 11969 fprodcom2fi 11970 |
| Copyright terms: Public domain | W3C validator |