ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnv GIF version

Theorem relcnv 5048
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.)
Assertion
Ref Expression
relcnv Rel 𝐴

Proof of Theorem relcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 4672 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
21relopabi 4792 1 Rel 𝐴
Colors of variables: wff set class
Syntax hints:   class class class wbr 4034  ccnv 4663  Rel wrel 4669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672
This theorem is referenced by:  relbrcnvg  5049  eliniseg2  5050  cnvsym  5054  intasym  5055  asymref  5056  cnvopab  5072  cnv0  5074  cnvdif  5077  dfrel2  5121  cnvcnv  5123  cnvsn0  5139  cnvcnvsn  5147  resdm2  5161  coi2  5187  coires1  5188  cnvssrndm  5192  unidmrn  5203  cnvexg  5208  cnviinm  5212  funi  5291  funcnvsn  5304  funcnv2  5319  funcnveq  5322  fcnvres  5442  f1cnvcnv  5475  f1ompt  5714  fliftcnv  5843  cnvf1o  6284  reldmtpos  6312  dmtpos  6315  rntpos  6316  dftpos3  6321  dftpos4  6322  tpostpos  6323  tposf12  6328  ercnv  6614  cnvct  6869  relcnvfi  7008  fsumcnv  11604  fisumcom2  11605  fprodcnv  11792  fprodcom2fi  11793
  Copyright terms: Public domain W3C validator