ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnv GIF version

Theorem relcnv 5044
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.)
Assertion
Ref Expression
relcnv Rel 𝐴

Proof of Theorem relcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 4668 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
21relopabi 4788 1 Rel 𝐴
Colors of variables: wff set class
Syntax hints:   class class class wbr 4030  ccnv 4659  Rel wrel 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668
This theorem is referenced by:  relbrcnvg  5045  eliniseg2  5046  cnvsym  5050  intasym  5051  asymref  5052  cnvopab  5068  cnv0  5070  cnvdif  5073  dfrel2  5117  cnvcnv  5119  cnvsn0  5135  cnvcnvsn  5143  resdm2  5157  coi2  5183  coires1  5184  cnvssrndm  5188  unidmrn  5199  cnvexg  5204  cnviinm  5208  funi  5287  funcnvsn  5300  funcnv2  5315  funcnveq  5318  fcnvres  5438  f1cnvcnv  5471  f1ompt  5710  fliftcnv  5839  cnvf1o  6280  reldmtpos  6308  dmtpos  6311  rntpos  6312  dftpos3  6317  dftpos4  6318  tpostpos  6319  tposf12  6324  ercnv  6610  cnvct  6865  relcnvfi  7002  fsumcnv  11583  fisumcom2  11584  fprodcnv  11771  fprodcom2fi  11772
  Copyright terms: Public domain W3C validator