| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relcnv | GIF version | ||
| Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
| Ref | Expression |
|---|---|
| relcnv | ⊢ Rel ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 4672 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 2 | 1 | relopabi 4792 | 1 ⊢ Rel ◡𝐴 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4034 ◡ccnv 4663 Rel wrel 4669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 |
| This theorem is referenced by: relbrcnvg 5049 eliniseg2 5050 cnvsym 5054 intasym 5055 asymref 5056 cnvopab 5072 cnv0 5074 cnvdif 5077 dfrel2 5121 cnvcnv 5123 cnvsn0 5139 cnvcnvsn 5147 resdm2 5161 coi2 5187 coires1 5188 cnvssrndm 5192 unidmrn 5203 cnvexg 5208 cnviinm 5212 funi 5291 funcnvsn 5304 funcnv2 5319 funcnveq 5322 fcnvres 5442 f1cnvcnv 5475 f1ompt 5714 fliftcnv 5843 cnvf1o 6284 reldmtpos 6312 dmtpos 6315 rntpos 6316 dftpos3 6321 dftpos4 6322 tpostpos 6323 tposf12 6328 ercnv 6614 cnvct 6869 relcnvfi 7008 fsumcnv 11604 fisumcom2 11605 fprodcnv 11792 fprodcom2fi 11793 |
| Copyright terms: Public domain | W3C validator |