| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relcnv | GIF version | ||
| Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
| Ref | Expression |
|---|---|
| relcnv | ⊢ Rel ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 4701 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 2 | 1 | relopabi 4821 | 1 ⊢ Rel ◡𝐴 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4059 ◡ccnv 4692 Rel wrel 4698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 |
| This theorem is referenced by: relbrcnvg 5080 eliniseg2 5081 cnvsym 5085 intasym 5086 asymref 5087 cnvopab 5103 cnv0 5105 cnvdif 5108 dfrel2 5152 cnvcnv 5154 cnvsn0 5170 cnvcnvsn 5178 resdm2 5192 coi2 5218 coires1 5219 cnvssrndm 5223 unidmrn 5234 cnvexg 5239 cnviinm 5243 funi 5322 funcnvsn 5338 funcnv2 5353 funcnveq 5356 fcnvres 5481 f1cnvcnv 5514 f1ompt 5754 fliftcnv 5887 cnvf1o 6334 reldmtpos 6362 dmtpos 6365 rntpos 6366 dftpos3 6371 dftpos4 6372 tpostpos 6373 tposf12 6378 ercnv 6664 cnvct 6925 relcnvfi 7069 fsumcnv 11863 fisumcom2 11864 fprodcnv 12051 fprodcom2fi 12052 |
| Copyright terms: Public domain | W3C validator |