Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relcnv | GIF version |
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
relcnv | ⊢ Rel ◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 4617 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
2 | 1 | relopabi 4735 | 1 ⊢ Rel ◡𝐴 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3987 ◡ccnv 4608 Rel wrel 4614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-opab 4049 df-xp 4615 df-rel 4616 df-cnv 4617 |
This theorem is referenced by: relbrcnvg 4988 cnvsym 4992 intasym 4993 asymref 4994 cnvopab 5010 cnv0 5012 cnvdif 5015 dfrel2 5059 cnvcnv 5061 cnvsn0 5077 cnvcnvsn 5085 resdm2 5099 coi2 5125 coires1 5126 cnvssrndm 5130 unidmrn 5141 cnvexg 5146 cnviinm 5150 funi 5228 funcnvsn 5241 funcnv2 5256 funcnveq 5259 fcnvres 5379 f1cnvcnv 5412 f1ompt 5645 fliftcnv 5772 cnvf1o 6202 reldmtpos 6230 dmtpos 6233 rntpos 6234 dftpos3 6239 dftpos4 6240 tpostpos 6241 tposf12 6246 ercnv 6532 cnvct 6785 relcnvfi 6916 fsumcnv 11393 fisumcom2 11394 fprodcnv 11581 fprodcom2fi 11582 |
Copyright terms: Public domain | W3C validator |