| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relcnv | GIF version | ||
| Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
| Ref | Expression |
|---|---|
| relcnv | ⊢ Rel ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 4727 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 2 | 1 | relopabi 4847 | 1 ⊢ Rel ◡𝐴 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4083 ◡ccnv 4718 Rel wrel 4724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 |
| This theorem is referenced by: relbrcnvg 5107 eliniseg2 5108 cnvsym 5112 intasym 5113 asymref 5114 cnvopab 5130 cnv0 5132 cnvdif 5135 dfrel2 5179 cnvcnv 5181 cnvsn0 5197 cnvcnvsn 5205 resdm2 5219 coi2 5245 coires1 5246 cnvssrndm 5250 unidmrn 5261 cnvexg 5266 cnviinm 5270 funi 5350 funcnvsn 5366 funcnv2 5381 funcnveq 5384 fcnvres 5509 f1cnvcnv 5542 f1ompt 5786 fliftcnv 5919 cnvf1o 6371 reldmtpos 6399 dmtpos 6402 rntpos 6403 dftpos3 6408 dftpos4 6409 tpostpos 6410 tposf12 6415 ercnv 6701 cnvct 6962 relcnvfi 7108 fsumcnv 11948 fisumcom2 11949 fprodcnv 12136 fprodcom2fi 12137 |
| Copyright terms: Public domain | W3C validator |