ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnv GIF version

Theorem relcnv 5106
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.)
Assertion
Ref Expression
relcnv Rel 𝐴

Proof of Theorem relcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 4727 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
21relopabi 4847 1 Rel 𝐴
Colors of variables: wff set class
Syntax hints:   class class class wbr 4083  ccnv 4718  Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727
This theorem is referenced by:  relbrcnvg  5107  eliniseg2  5108  cnvsym  5112  intasym  5113  asymref  5114  cnvopab  5130  cnv0  5132  cnvdif  5135  dfrel2  5179  cnvcnv  5181  cnvsn0  5197  cnvcnvsn  5205  resdm2  5219  coi2  5245  coires1  5246  cnvssrndm  5250  unidmrn  5261  cnvexg  5266  cnviinm  5270  funi  5350  funcnvsn  5366  funcnv2  5381  funcnveq  5384  fcnvres  5509  f1cnvcnv  5542  f1ompt  5786  fliftcnv  5919  cnvf1o  6371  reldmtpos  6399  dmtpos  6402  rntpos  6403  dftpos3  6408  dftpos4  6409  tpostpos  6410  tposf12  6415  ercnv  6701  cnvct  6962  relcnvfi  7108  fsumcnv  11948  fisumcom2  11949  fprodcnv  12136  fprodcom2fi  12137
  Copyright terms: Public domain W3C validator