| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > relcnv | GIF version | ||
| Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) | 
| Ref | Expression | 
|---|---|
| relcnv | ⊢ Rel ◡𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-cnv 4671 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 2 | 1 | relopabi 4791 | 1 ⊢ Rel ◡𝐴 | 
| Colors of variables: wff set class | 
| Syntax hints: class class class wbr 4033 ◡ccnv 4662 Rel wrel 4668 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 | 
| This theorem is referenced by: relbrcnvg 5048 eliniseg2 5049 cnvsym 5053 intasym 5054 asymref 5055 cnvopab 5071 cnv0 5073 cnvdif 5076 dfrel2 5120 cnvcnv 5122 cnvsn0 5138 cnvcnvsn 5146 resdm2 5160 coi2 5186 coires1 5187 cnvssrndm 5191 unidmrn 5202 cnvexg 5207 cnviinm 5211 funi 5290 funcnvsn 5303 funcnv2 5318 funcnveq 5321 fcnvres 5441 f1cnvcnv 5474 f1ompt 5713 fliftcnv 5842 cnvf1o 6283 reldmtpos 6311 dmtpos 6314 rntpos 6315 dftpos3 6320 dftpos4 6321 tpostpos 6322 tposf12 6327 ercnv 6613 cnvct 6868 relcnvfi 7007 fsumcnv 11602 fisumcom2 11603 fprodcnv 11790 fprodcom2fi 11791 | 
| Copyright terms: Public domain | W3C validator |