ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvun GIF version

Theorem cnvun 5016
Description: The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvun (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cnvun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 4619 . . 3 (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦(𝐴𝐵)𝑥}
2 unopab 4068 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}) = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝑥𝑦𝐵𝑥)}
3 brun 4040 . . . . 5 (𝑦(𝐴𝐵)𝑥 ↔ (𝑦𝐴𝑥𝑦𝐵𝑥))
43opabbii 4056 . . . 4 {⟨𝑥, 𝑦⟩ ∣ 𝑦(𝐴𝐵)𝑥} = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝑥𝑦𝐵𝑥)}
52, 4eqtr4i 2194 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}) = {⟨𝑥, 𝑦⟩ ∣ 𝑦(𝐴𝐵)𝑥}
61, 5eqtr4i 2194 . 2 (𝐴𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
7 df-cnv 4619 . . 3 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
8 df-cnv 4619 . . 3 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}
97, 8uneq12i 3279 . 2 (𝐴𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
106, 9eqtr4i 2194 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wo 703   = wceq 1348  cun 3119   class class class wbr 3989  {copab 4049  ccnv 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-br 3990  df-opab 4051  df-cnv 4619
This theorem is referenced by:  rnun  5019  f1oun  5462  sbthlemi8  6941  caseinj  7066  djuinj  7083
  Copyright terms: Public domain W3C validator