| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvun | GIF version | ||
| Description: The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvun | ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 4691 | . . 3 ⊢ ◡(𝐴 ∪ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∪ 𝐵)𝑥} | |
| 2 | unopab 4131 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∪ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) = {〈𝑥, 𝑦〉 ∣ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)} | |
| 3 | brun 4103 | . . . . 5 ⊢ (𝑦(𝐴 ∪ 𝐵)𝑥 ↔ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)) | |
| 4 | 3 | opabbii 4119 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∪ 𝐵)𝑥} = {〈𝑥, 𝑦〉 ∣ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)} |
| 5 | 2, 4 | eqtr4i 2230 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∪ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) = {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∪ 𝐵)𝑥} |
| 6 | 1, 5 | eqtr4i 2230 | . 2 ⊢ ◡(𝐴 ∪ 𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∪ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
| 7 | df-cnv 4691 | . . 3 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 8 | df-cnv 4691 | . . 3 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
| 9 | 7, 8 | uneq12i 3329 | . 2 ⊢ (◡𝐴 ∪ ◡𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∪ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
| 10 | 6, 9 | eqtr4i 2230 | 1 ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 710 = wceq 1373 ∪ cun 3168 class class class wbr 4051 {copab 4112 ◡ccnv 4682 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-br 4052 df-opab 4114 df-cnv 4691 |
| This theorem is referenced by: rnun 5100 f1oun 5554 sbthlemi8 7081 caseinj 7206 djuinj 7223 xnn0nnen 10604 |
| Copyright terms: Public domain | W3C validator |