| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvun | GIF version | ||
| Description: The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvun | ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 4682 | . . 3 ⊢ ◡(𝐴 ∪ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∪ 𝐵)𝑥} | |
| 2 | unopab 4122 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∪ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) = {〈𝑥, 𝑦〉 ∣ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)} | |
| 3 | brun 4094 | . . . . 5 ⊢ (𝑦(𝐴 ∪ 𝐵)𝑥 ↔ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)) | |
| 4 | 3 | opabbii 4110 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∪ 𝐵)𝑥} = {〈𝑥, 𝑦〉 ∣ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)} |
| 5 | 2, 4 | eqtr4i 2228 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∪ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) = {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∪ 𝐵)𝑥} |
| 6 | 1, 5 | eqtr4i 2228 | . 2 ⊢ ◡(𝐴 ∪ 𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∪ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
| 7 | df-cnv 4682 | . . 3 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 8 | df-cnv 4682 | . . 3 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
| 9 | 7, 8 | uneq12i 3324 | . 2 ⊢ (◡𝐴 ∪ ◡𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∪ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
| 10 | 6, 9 | eqtr4i 2228 | 1 ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 709 = wceq 1372 ∪ cun 3163 class class class wbr 4043 {copab 4103 ◡ccnv 4673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-br 4044 df-opab 4105 df-cnv 4682 |
| This theorem is referenced by: rnun 5090 f1oun 5541 sbthlemi8 7065 caseinj 7190 djuinj 7207 xnn0nnen 10580 |
| Copyright terms: Public domain | W3C validator |