![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvun | GIF version |
Description: The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvun | ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 4636 | . . 3 ⊢ ◡(𝐴 ∪ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦(𝐴 ∪ 𝐵)𝑥} | |
2 | unopab 4084 | . . . 4 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}) = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)} | |
3 | brun 4056 | . . . . 5 ⊢ (𝑦(𝐴 ∪ 𝐵)𝑥 ↔ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)) | |
4 | 3 | opabbii 4072 | . . . 4 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑦(𝐴 ∪ 𝐵)𝑥} = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)} |
5 | 2, 4 | eqtr4i 2201 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}) = {⟨𝑥, 𝑦⟩ ∣ 𝑦(𝐴 ∪ 𝐵)𝑥} |
6 | 1, 5 | eqtr4i 2201 | . 2 ⊢ ◡(𝐴 ∪ 𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}) |
7 | df-cnv 4636 | . . 3 ⊢ ◡𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} | |
8 | df-cnv 4636 | . . 3 ⊢ ◡𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥} | |
9 | 7, 8 | uneq12i 3289 | . 2 ⊢ (◡𝐴 ∪ ◡𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}) |
10 | 6, 9 | eqtr4i 2201 | 1 ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 708 = wceq 1353 ∪ cun 3129 class class class wbr 4005 {copab 4065 ◡ccnv 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-br 4006 df-opab 4067 df-cnv 4636 |
This theorem is referenced by: rnun 5039 f1oun 5483 sbthlemi8 6965 caseinj 7090 djuinj 7107 |
Copyright terms: Public domain | W3C validator |