ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelcnvg GIF version

Theorem opelcnvg 4876
Description: Ordered-pair membership in converse. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
opelcnvg ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))

Proof of Theorem opelcnvg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4063 . . 3 (𝑥 = 𝐴 → (𝑦𝑅𝑥𝑦𝑅𝐴))
2 breq1 4062 . . 3 (𝑦 = 𝐵 → (𝑦𝑅𝐴𝐵𝑅𝐴))
3 df-cnv 4701 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥}
41, 2, 3brabg 4333 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐵𝑅𝐴))
5 df-br 4060 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
6 df-br 4060 . 2 (𝐵𝑅𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)
74, 5, 63bitr3g 222 1 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2178  cop 3646   class class class wbr 4059  ccnv 4692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-cnv 4701
This theorem is referenced by:  brcnvg  4877  opelcnv  4878  fvimacnv  5718  cnvf1olem  6333  brtposg  6363  xrlenlt  8172
  Copyright terms: Public domain W3C validator