Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelcnvg | GIF version |
Description: Ordered-pair membership in converse. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
opelcnvg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (⟨𝐴, 𝐵⟩ ∈ ◡𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4002 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐴)) | |
2 | breq1 4001 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐴 ↔ 𝐵𝑅𝐴)) | |
3 | df-cnv 4628 | . . 3 ⊢ ◡𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥} | |
4 | 1, 2, 3 | brabg 4263 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
5 | df-br 3999 | . 2 ⊢ (𝐴◡𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ◡𝑅) | |
6 | df-br 3999 | . 2 ⊢ (𝐵𝑅𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅) | |
7 | 4, 5, 6 | 3bitr3g 222 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (⟨𝐴, 𝐵⟩ ∈ ◡𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2146 ⟨cop 3592 class class class wbr 3998 ◡ccnv 4619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-cnv 4628 |
This theorem is referenced by: brcnvg 4801 opelcnv 4802 fvimacnv 5623 cnvf1olem 6215 brtposg 6245 xrlenlt 7996 |
Copyright terms: Public domain | W3C validator |