![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opelcnvg | GIF version |
Description: Ordered-pair membership in converse. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
opelcnvg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (⟨𝐴, 𝐵⟩ ∈ ◡𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4008 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐴)) | |
2 | breq1 4007 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐴 ↔ 𝐵𝑅𝐴)) | |
3 | df-cnv 4635 | . . 3 ⊢ ◡𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥} | |
4 | 1, 2, 3 | brabg 4270 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
5 | df-br 4005 | . 2 ⊢ (𝐴◡𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ◡𝑅) | |
6 | df-br 4005 | . 2 ⊢ (𝐵𝑅𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅) | |
7 | 4, 5, 6 | 3bitr3g 222 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (⟨𝐴, 𝐵⟩ ∈ ◡𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 ⟨cop 3596 class class class wbr 4004 ◡ccnv 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-br 4005 df-opab 4066 df-cnv 4635 |
This theorem is referenced by: brcnvg 4809 opelcnv 4810 fvimacnv 5632 cnvf1olem 6225 brtposg 6255 xrlenlt 8022 |
Copyright terms: Public domain | W3C validator |