Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvi | GIF version |
Description: The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvi | ⊢ ◡ I = I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | ideq 4756 | . . . 4 ⊢ (𝑦 I 𝑥 ↔ 𝑦 = 𝑥) |
3 | equcom 1694 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
4 | 2, 3 | bitri 183 | . . 3 ⊢ (𝑦 I 𝑥 ↔ 𝑥 = 𝑦) |
5 | 4 | opabbii 4049 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦 I 𝑥} = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
6 | df-cnv 4612 | . 2 ⊢ ◡ I = {〈𝑥, 𝑦〉 ∣ 𝑦 I 𝑥} | |
7 | df-id 4271 | . 2 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
8 | 5, 6, 7 | 3eqtr4i 2196 | 1 ⊢ ◡ I = I |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 class class class wbr 3982 {copab 4042 I cid 4266 ◡ccnv 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 |
This theorem is referenced by: coi2 5120 funi 5220 cnvresid 5262 fcoi1 5368 ssdomg 6744 |
Copyright terms: Public domain | W3C validator |