ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvi GIF version

Theorem cnvi 5087
Description: The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvi I = I

Proof of Theorem cnvi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2775 . . . . 5 𝑥 ∈ V
21ideq 4830 . . . 4 (𝑦 I 𝑥𝑦 = 𝑥)
3 equcom 1729 . . . 4 (𝑦 = 𝑥𝑥 = 𝑦)
42, 3bitri 184 . . 3 (𝑦 I 𝑥𝑥 = 𝑦)
54opabbii 4111 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑦 I 𝑥} = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
6 df-cnv 4683 . 2 I = {⟨𝑥, 𝑦⟩ ∣ 𝑦 I 𝑥}
7 df-id 4340 . 2 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
85, 6, 73eqtr4i 2236 1 I = I
Colors of variables: wff set class
Syntax hints:   = wceq 1373   class class class wbr 4044  {copab 4104   I cid 4335  ccnv 4674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683
This theorem is referenced by:  coi2  5199  funi  5303  cnvresid  5348  fcoi1  5456  ssdomg  6870
  Copyright terms: Public domain W3C validator