ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvi GIF version

Theorem cnvi 5106
Description: The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvi I = I

Proof of Theorem cnvi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2779 . . . . 5 𝑥 ∈ V
21ideq 4848 . . . 4 (𝑦 I 𝑥𝑦 = 𝑥)
3 equcom 1730 . . . 4 (𝑦 = 𝑥𝑥 = 𝑦)
42, 3bitri 184 . . 3 (𝑦 I 𝑥𝑥 = 𝑦)
54opabbii 4127 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑦 I 𝑥} = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
6 df-cnv 4701 . 2 I = {⟨𝑥, 𝑦⟩ ∣ 𝑦 I 𝑥}
7 df-id 4358 . 2 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
85, 6, 73eqtr4i 2238 1 I = I
Colors of variables: wff set class
Syntax hints:   = wceq 1373   class class class wbr 4059  {copab 4120   I cid 4353  ccnv 4692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701
This theorem is referenced by:  coi2  5218  funi  5322  cnvresid  5367  fcoi1  5478  ssdomg  6893
  Copyright terms: Public domain W3C validator