Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbcnvg | GIF version |
Description: Move class substitution in and out of the converse of a function. (Contributed by Thierry Arnoux, 8-Feb-2017.) |
Ref | Expression |
---|---|
csbcnvg | ⊢ (𝐴 ∈ 𝑉 → ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbrg 4052 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑧𝐹𝑦 ↔ ⦋𝐴 / 𝑥⦌𝑧⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑦)) | |
2 | csbconstg 3069 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑧 = 𝑧) | |
3 | csbconstg 3069 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑦 = 𝑦) | |
4 | 2, 3 | breq12d 4011 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑧⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑦 ↔ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦)) |
5 | 1, 4 | bitrd 188 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑧𝐹𝑦 ↔ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦)) |
6 | 5 | opabbidv 4064 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝑧𝐹𝑦} = {〈𝑦, 𝑧〉 ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦}) |
7 | csbopabg 4076 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝑧𝐹𝑦} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝑧𝐹𝑦}) | |
8 | df-cnv 4628 | . . . 4 ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = {〈𝑦, 𝑧〉 ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦} | |
9 | 8 | a1i 9 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ◡⦋𝐴 / 𝑥⦌𝐹 = {〈𝑦, 𝑧〉 ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦}) |
10 | 6, 7, 9 | 3eqtr4rd 2219 | . 2 ⊢ (𝐴 ∈ 𝑉 → ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝑧𝐹𝑦}) |
11 | df-cnv 4628 | . . 3 ⊢ ◡𝐹 = {〈𝑦, 𝑧〉 ∣ 𝑧𝐹𝑦} | |
12 | 11 | csbeq2i 3082 | . 2 ⊢ ⦋𝐴 / 𝑥⦌◡𝐹 = ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝑧𝐹𝑦} |
13 | 10, 12 | eqtr4di 2226 | 1 ⊢ (𝐴 ∈ 𝑉 → ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 [wsbc 2960 ⦋csb 3055 class class class wbr 3998 {copab 4058 ◡ccnv 4619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-cnv 4628 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |