Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvin | GIF version |
Description: Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
cnvin | ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 4619 | . . 3 ⊢ ◡(𝐴 ∩ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∩ 𝐵)𝑥} | |
2 | inopab 4743 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) = {〈𝑥, 𝑦〉 ∣ (𝑦𝐴𝑥 ∧ 𝑦𝐵𝑥)} | |
3 | brin 4041 | . . . . 5 ⊢ (𝑦(𝐴 ∩ 𝐵)𝑥 ↔ (𝑦𝐴𝑥 ∧ 𝑦𝐵𝑥)) | |
4 | 3 | opabbii 4056 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∩ 𝐵)𝑥} = {〈𝑥, 𝑦〉 ∣ (𝑦𝐴𝑥 ∧ 𝑦𝐵𝑥)} |
5 | 2, 4 | eqtr4i 2194 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) = {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∩ 𝐵)𝑥} |
6 | 1, 5 | eqtr4i 2194 | . 2 ⊢ ◡(𝐴 ∩ 𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
7 | df-cnv 4619 | . . 3 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
8 | df-cnv 4619 | . . 3 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
9 | 7, 8 | ineq12i 3326 | . 2 ⊢ (◡𝐴 ∩ ◡𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
10 | 6, 9 | eqtr4i 2194 | 1 ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∩ cin 3120 class class class wbr 3989 {copab 4049 ◡ccnv 4610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 |
This theorem is referenced by: rnin 5020 dminxp 5055 imainrect 5056 cnvcnv 5063 |
Copyright terms: Public domain | W3C validator |