ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvin GIF version

Theorem cnvin 4954
Description: Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
cnvin (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cnvin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 4555 . . 3 (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦(𝐴𝐵)𝑥}
2 inopab 4679 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}) = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝑥𝑦𝐵𝑥)}
3 brin 3988 . . . . 5 (𝑦(𝐴𝐵)𝑥 ↔ (𝑦𝐴𝑥𝑦𝐵𝑥))
43opabbii 4003 . . . 4 {⟨𝑥, 𝑦⟩ ∣ 𝑦(𝐴𝐵)𝑥} = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝑥𝑦𝐵𝑥)}
52, 4eqtr4i 2164 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}) = {⟨𝑥, 𝑦⟩ ∣ 𝑦(𝐴𝐵)𝑥}
61, 5eqtr4i 2164 . 2 (𝐴𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
7 df-cnv 4555 . . 3 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
8 df-cnv 4555 . . 3 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}
97, 8ineq12i 3280 . 2 (𝐴𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
106, 9eqtr4i 2164 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1332  cin 3075   class class class wbr 3937  {copab 3996  ccnv 4546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-xp 4553  df-rel 4554  df-cnv 4555
This theorem is referenced by:  rnin  4956  dminxp  4991  imainrect  4992  cnvcnv  4999
  Copyright terms: Public domain W3C validator