| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvin | GIF version | ||
| Description: Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| cnvin | ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 4727 | . . 3 ⊢ ◡(𝐴 ∩ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∩ 𝐵)𝑥} | |
| 2 | inopab 4854 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) = {〈𝑥, 𝑦〉 ∣ (𝑦𝐴𝑥 ∧ 𝑦𝐵𝑥)} | |
| 3 | brin 4136 | . . . . 5 ⊢ (𝑦(𝐴 ∩ 𝐵)𝑥 ↔ (𝑦𝐴𝑥 ∧ 𝑦𝐵𝑥)) | |
| 4 | 3 | opabbii 4151 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∩ 𝐵)𝑥} = {〈𝑥, 𝑦〉 ∣ (𝑦𝐴𝑥 ∧ 𝑦𝐵𝑥)} |
| 5 | 2, 4 | eqtr4i 2253 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) = {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∩ 𝐵)𝑥} |
| 6 | 1, 5 | eqtr4i 2253 | . 2 ⊢ ◡(𝐴 ∩ 𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
| 7 | df-cnv 4727 | . . 3 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 8 | df-cnv 4727 | . . 3 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
| 9 | 7, 8 | ineq12i 3403 | . 2 ⊢ (◡𝐴 ∩ ◡𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
| 10 | 6, 9 | eqtr4i 2253 | 1 ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∩ cin 3196 class class class wbr 4083 {copab 4144 ◡ccnv 4718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 |
| This theorem is referenced by: rnin 5138 dminxp 5173 imainrect 5174 cnvcnv 5181 |
| Copyright terms: Public domain | W3C validator |