ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvin GIF version

Theorem cnvin 5018
Description: Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
cnvin (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cnvin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 4619 . . 3 (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦(𝐴𝐵)𝑥}
2 inopab 4743 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}) = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝑥𝑦𝐵𝑥)}
3 brin 4041 . . . . 5 (𝑦(𝐴𝐵)𝑥 ↔ (𝑦𝐴𝑥𝑦𝐵𝑥))
43opabbii 4056 . . . 4 {⟨𝑥, 𝑦⟩ ∣ 𝑦(𝐴𝐵)𝑥} = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝑥𝑦𝐵𝑥)}
52, 4eqtr4i 2194 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}) = {⟨𝑥, 𝑦⟩ ∣ 𝑦(𝐴𝐵)𝑥}
61, 5eqtr4i 2194 . 2 (𝐴𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
7 df-cnv 4619 . . 3 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
8 df-cnv 4619 . . 3 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}
97, 8ineq12i 3326 . 2 (𝐴𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
106, 9eqtr4i 2194 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  cin 3120   class class class wbr 3989  {copab 4049  ccnv 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619
This theorem is referenced by:  rnin  5020  dminxp  5055  imainrect  5056  cnvcnv  5063
  Copyright terms: Public domain W3C validator