Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvin | GIF version |
Description: Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
cnvin | ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 4628 | . . 3 ⊢ ◡(𝐴 ∩ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∩ 𝐵)𝑥} | |
2 | inopab 4752 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) = {〈𝑥, 𝑦〉 ∣ (𝑦𝐴𝑥 ∧ 𝑦𝐵𝑥)} | |
3 | brin 4050 | . . . . 5 ⊢ (𝑦(𝐴 ∩ 𝐵)𝑥 ↔ (𝑦𝐴𝑥 ∧ 𝑦𝐵𝑥)) | |
4 | 3 | opabbii 4065 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∩ 𝐵)𝑥} = {〈𝑥, 𝑦〉 ∣ (𝑦𝐴𝑥 ∧ 𝑦𝐵𝑥)} |
5 | 2, 4 | eqtr4i 2199 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) = {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∩ 𝐵)𝑥} |
6 | 1, 5 | eqtr4i 2199 | . 2 ⊢ ◡(𝐴 ∩ 𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
7 | df-cnv 4628 | . . 3 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
8 | df-cnv 4628 | . . 3 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
9 | 7, 8 | ineq12i 3332 | . 2 ⊢ (◡𝐴 ∩ ◡𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
10 | 6, 9 | eqtr4i 2199 | 1 ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∩ cin 3126 class class class wbr 3998 {copab 4058 ◡ccnv 4619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 df-cnv 4628 |
This theorem is referenced by: rnin 5030 dminxp 5065 imainrect 5066 cnvcnv 5073 |
Copyright terms: Public domain | W3C validator |