![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvin | GIF version |
Description: Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
cnvin | ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 4668 | . . 3 ⊢ ◡(𝐴 ∩ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∩ 𝐵)𝑥} | |
2 | inopab 4795 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) = {〈𝑥, 𝑦〉 ∣ (𝑦𝐴𝑥 ∧ 𝑦𝐵𝑥)} | |
3 | brin 4082 | . . . . 5 ⊢ (𝑦(𝐴 ∩ 𝐵)𝑥 ↔ (𝑦𝐴𝑥 ∧ 𝑦𝐵𝑥)) | |
4 | 3 | opabbii 4097 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∩ 𝐵)𝑥} = {〈𝑥, 𝑦〉 ∣ (𝑦𝐴𝑥 ∧ 𝑦𝐵𝑥)} |
5 | 2, 4 | eqtr4i 2217 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) = {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∩ 𝐵)𝑥} |
6 | 1, 5 | eqtr4i 2217 | . 2 ⊢ ◡(𝐴 ∩ 𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
7 | df-cnv 4668 | . . 3 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
8 | df-cnv 4668 | . . 3 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
9 | 7, 8 | ineq12i 3359 | . 2 ⊢ (◡𝐴 ∩ ◡𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
10 | 6, 9 | eqtr4i 2217 | 1 ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∩ cin 3153 class class class wbr 4030 {copab 4090 ◡ccnv 4659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-cnv 4668 |
This theorem is referenced by: rnin 5076 dminxp 5111 imainrect 5112 cnvcnv 5119 |
Copyright terms: Public domain | W3C validator |