![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvin | GIF version |
Description: Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
cnvin | ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 4667 | . . 3 ⊢ ◡(𝐴 ∩ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∩ 𝐵)𝑥} | |
2 | inopab 4794 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) = {〈𝑥, 𝑦〉 ∣ (𝑦𝐴𝑥 ∧ 𝑦𝐵𝑥)} | |
3 | brin 4081 | . . . . 5 ⊢ (𝑦(𝐴 ∩ 𝐵)𝑥 ↔ (𝑦𝐴𝑥 ∧ 𝑦𝐵𝑥)) | |
4 | 3 | opabbii 4096 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∩ 𝐵)𝑥} = {〈𝑥, 𝑦〉 ∣ (𝑦𝐴𝑥 ∧ 𝑦𝐵𝑥)} |
5 | 2, 4 | eqtr4i 2217 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) = {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∩ 𝐵)𝑥} |
6 | 1, 5 | eqtr4i 2217 | . 2 ⊢ ◡(𝐴 ∩ 𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
7 | df-cnv 4667 | . . 3 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
8 | df-cnv 4667 | . . 3 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
9 | 7, 8 | ineq12i 3358 | . 2 ⊢ (◡𝐴 ∩ ◡𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∩ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
10 | 6, 9 | eqtr4i 2217 | 1 ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∩ cin 3152 class class class wbr 4029 {copab 4089 ◡ccnv 4658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 |
This theorem is referenced by: rnin 5075 dminxp 5110 imainrect 5111 cnvcnv 5118 |
Copyright terms: Public domain | W3C validator |