| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvcnv3 | GIF version | ||
| Description: The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnvcnv3 | ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 4684 | . 2 ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑦◡𝑅𝑥} | |
| 2 | vex 2775 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | vex 2775 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 2, 3 | brcnv 4862 | . . 3 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
| 5 | 4 | opabbii 4112 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦◡𝑅𝑥} = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
| 6 | 1, 5 | eqtri 2226 | 1 ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 class class class wbr 4045 {copab 4105 ◡ccnv 4675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-cnv 4684 |
| This theorem is referenced by: dfrel4v 5135 |
| Copyright terms: Public domain | W3C validator |