![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvcnv3 | GIF version |
Description: The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015.) |
Ref | Expression |
---|---|
cnvcnv3 | ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 4668 | . 2 ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑦◡𝑅𝑥} | |
2 | vex 2763 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | vex 2763 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | brcnv 4846 | . . 3 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
5 | 4 | opabbii 4097 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦◡𝑅𝑥} = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
6 | 1, 5 | eqtri 2214 | 1 ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 class class class wbr 4030 {copab 4090 ◡ccnv 4659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-cnv 4668 |
This theorem is referenced by: dfrel4v 5118 |
Copyright terms: Public domain | W3C validator |