ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnv3 GIF version

Theorem cnvcnv3 5119
Description: The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015.)
Assertion
Ref Expression
cnvcnv3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦}
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem cnvcnv3
StepHypRef Expression
1 df-cnv 4671 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥}
2 vex 2766 . . . 4 𝑦 ∈ V
3 vex 2766 . . . 4 𝑥 ∈ V
42, 3brcnv 4849 . . 3 (𝑦𝑅𝑥𝑥𝑅𝑦)
54opabbii 4100 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥} = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦}
61, 5eqtri 2217 1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦}
Colors of variables: wff set class
Syntax hints:   = wceq 1364   class class class wbr 4033  {copab 4093  ccnv 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-cnv 4671
This theorem is referenced by:  dfrel4v  5121
  Copyright terms: Public domain W3C validator