| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvcnv3 | GIF version | ||
| Description: The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnvcnv3 | ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 4701 | . 2 ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑦◡𝑅𝑥} | |
| 2 | vex 2779 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | vex 2779 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 2, 3 | brcnv 4879 | . . 3 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
| 5 | 4 | opabbii 4127 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦◡𝑅𝑥} = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
| 6 | 1, 5 | eqtri 2228 | 1 ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 class class class wbr 4059 {copab 4120 ◡ccnv 4692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-cnv 4701 |
| This theorem is referenced by: dfrel4v 5153 |
| Copyright terms: Public domain | W3C validator |