![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvss | GIF version |
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
cnvss | ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3164 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (〈𝑦, 𝑥〉 ∈ 𝐴 → 〈𝑦, 𝑥〉 ∈ 𝐵)) | |
2 | df-br 4019 | . . . 4 ⊢ (𝑦𝐴𝑥 ↔ 〈𝑦, 𝑥〉 ∈ 𝐴) | |
3 | df-br 4019 | . . . 4 ⊢ (𝑦𝐵𝑥 ↔ 〈𝑦, 𝑥〉 ∈ 𝐵) | |
4 | 1, 2, 3 | 3imtr4g 205 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑦𝐴𝑥 → 𝑦𝐵𝑥)) |
5 | 4 | ssopab2dv 4296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
6 | df-cnv 4652 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
7 | df-cnv 4652 | . 2 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
8 | 5, 6, 7 | 3sstr4g 3213 | 1 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 ⊆ wss 3144 〈cop 3610 class class class wbr 4018 {copab 4078 ◡ccnv 4643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-in 3150 df-ss 3157 df-br 4019 df-opab 4080 df-cnv 4652 |
This theorem is referenced by: cnveq 4819 rnss 4875 relcnvtr 5166 funss 5254 funcnvuni 5304 funres11 5307 funcnvres 5308 foimacnv 5498 tposss 6270 structcnvcnv 12527 pw1nct 15206 |
Copyright terms: Public domain | W3C validator |