ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvss GIF version

Theorem cnvss 4839
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
cnvss (𝐴𝐵𝐴𝐵)

Proof of Theorem cnvss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3177 . . . 4 (𝐴𝐵 → (⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ 𝐵))
2 df-br 4034 . . . 4 (𝑦𝐴𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
3 df-br 4034 . . . 4 (𝑦𝐵𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
41, 2, 33imtr4g 205 . . 3 (𝐴𝐵 → (𝑦𝐴𝑥𝑦𝐵𝑥))
54ssopab2dv 4313 . 2 (𝐴𝐵 → {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
6 df-cnv 4671 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
7 df-cnv 4671 . 2 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}
85, 6, 73sstr4g 3226 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wss 3157  cop 3625   class class class wbr 4033  {copab 4093  ccnv 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-in 3163  df-ss 3170  df-br 4034  df-opab 4095  df-cnv 4671
This theorem is referenced by:  cnveq  4840  rnss  4896  relcnvtr  5189  funss  5277  funcnvuni  5327  funres11  5330  funcnvres  5331  foimacnv  5522  tposss  6304  structcnvcnv  12694  pw1nct  15647
  Copyright terms: Public domain W3C validator