ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvss GIF version

Theorem cnvss 4895
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
cnvss (𝐴𝐵𝐴𝐵)

Proof of Theorem cnvss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3218 . . . 4 (𝐴𝐵 → (⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ 𝐵))
2 df-br 4084 . . . 4 (𝑦𝐴𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
3 df-br 4084 . . . 4 (𝑦𝐵𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
41, 2, 33imtr4g 205 . . 3 (𝐴𝐵 → (𝑦𝐴𝑥𝑦𝐵𝑥))
54ssopab2dv 4367 . 2 (𝐴𝐵 → {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
6 df-cnv 4727 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
7 df-cnv 4727 . 2 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}
85, 6, 73sstr4g 3267 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  wss 3197  cop 3669   class class class wbr 4083  {copab 4144  ccnv 4718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-in 3203  df-ss 3210  df-br 4084  df-opab 4146  df-cnv 4727
This theorem is referenced by:  cnveq  4896  rnss  4954  relcnvtr  5248  funss  5337  funcnvuni  5390  funres11  5393  funcnvres  5394  foimacnv  5590  tposss  6392  structcnvcnv  13048  pw1nct  16369
  Copyright terms: Public domain W3C validator