| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > brcnv | GIF version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) | 
| Ref | Expression | 
|---|---|
| opelcnv.1 | ⊢ 𝐴 ∈ V | 
| opelcnv.2 | ⊢ 𝐵 ∈ V | 
| Ref | Expression | 
|---|---|
| brcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | brcnvg 4847 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 ∈ wcel 2167 Vcvv 2763 class class class wbr 4033 ◡ccnv 4662 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-cnv 4671 | 
| This theorem is referenced by: cnvco 4851 dfrn2 4854 dfdm4 4858 cnvsym 5053 intasym 5054 asymref 5055 qfto 5059 dminss 5084 imainss 5085 dminxp 5114 cnvcnv3 5119 cnvpom 5212 cnvsom 5213 dffun2 5268 funcnvsn 5303 funcnv2 5318 funcnveq 5321 fun2cnv 5322 imadif 5338 f1ompt 5713 f1eqcocnv 5838 fliftcnv 5842 isocnv2 5859 ercnv 6613 ecid 6657 cnvinfex 7084 eqinfti 7086 infvalti 7088 infmoti 7094 dfinfre 8983 pw1nct 15647 | 
| Copyright terms: Public domain | W3C validator |