ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcnv GIF version

Theorem brcnv 4845
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.)
Hypotheses
Ref Expression
opelcnv.1 𝐴 ∈ V
opelcnv.2 𝐵 ∈ V
Assertion
Ref Expression
brcnv (𝐴𝑅𝐵𝐵𝑅𝐴)

Proof of Theorem brcnv
StepHypRef Expression
1 opelcnv.1 . 2 𝐴 ∈ V
2 opelcnv.2 . 2 𝐵 ∈ V
3 brcnvg 4843 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵𝐵𝑅𝐴))
41, 2, 3mp2an 426 1 (𝐴𝑅𝐵𝐵𝑅𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2164  Vcvv 2760   class class class wbr 4029  ccnv 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-cnv 4667
This theorem is referenced by:  cnvco  4847  dfrn2  4850  dfdm4  4854  cnvsym  5049  intasym  5050  asymref  5051  qfto  5055  dminss  5080  imainss  5081  dminxp  5110  cnvcnv3  5115  cnvpom  5208  cnvsom  5209  dffun2  5264  funcnvsn  5299  funcnv2  5314  funcnveq  5317  fun2cnv  5318  imadif  5334  f1ompt  5709  f1eqcocnv  5834  fliftcnv  5838  isocnv2  5855  ercnv  6608  ecid  6652  cnvinfex  7077  eqinfti  7079  infvalti  7081  infmoti  7087  dfinfre  8975  pw1nct  15493
  Copyright terms: Public domain W3C validator