![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brcnv | GIF version |
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
opelcnv.1 | ⊢ 𝐴 ∈ V |
opelcnv.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | brcnvg 4658 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
4 | 1, 2, 3 | mp2an 420 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 1448 Vcvv 2641 class class class wbr 3875 ◡ccnv 4476 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-br 3876 df-opab 3930 df-cnv 4485 |
This theorem is referenced by: cnvco 4662 dfrn2 4665 dfdm4 4669 cnvsym 4858 intasym 4859 asymref 4860 qfto 4864 dminss 4889 imainss 4890 dminxp 4919 cnvcnv3 4924 cnvpom 5017 cnvsom 5018 dffun2 5069 funcnvsn 5104 funcnv2 5119 funcnveq 5122 fun2cnv 5123 imadif 5139 f1ompt 5503 f1eqcocnv 5624 fliftcnv 5628 isocnv2 5645 ercnv 6380 ecid 6422 cnvinfex 6820 eqinfti 6822 infvalti 6824 infmoti 6830 dfinfre 8572 |
Copyright terms: Public domain | W3C validator |