ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcnv GIF version

Theorem brcnv 4810
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.)
Hypotheses
Ref Expression
opelcnv.1 𝐴 ∈ V
opelcnv.2 𝐵 ∈ V
Assertion
Ref Expression
brcnv (𝐴𝑅𝐵𝐵𝑅𝐴)

Proof of Theorem brcnv
StepHypRef Expression
1 opelcnv.1 . 2 𝐴 ∈ V
2 opelcnv.2 . 2 𝐵 ∈ V
3 brcnvg 4808 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵𝐵𝑅𝐴))
41, 2, 3mp2an 426 1 (𝐴𝑅𝐵𝐵𝑅𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2148  Vcvv 2737   class class class wbr 4003  ccnv 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-br 4004  df-opab 4065  df-cnv 4634
This theorem is referenced by:  cnvco  4812  dfrn2  4815  dfdm4  4819  cnvsym  5012  intasym  5013  asymref  5014  qfto  5018  dminss  5043  imainss  5044  dminxp  5073  cnvcnv3  5078  cnvpom  5171  cnvsom  5172  dffun2  5226  funcnvsn  5261  funcnv2  5276  funcnveq  5279  fun2cnv  5280  imadif  5296  f1ompt  5667  f1eqcocnv  5791  fliftcnv  5795  isocnv2  5812  ercnv  6555  ecid  6597  cnvinfex  7016  eqinfti  7018  infvalti  7020  infmoti  7026  dfinfre  8912  pw1nct  14688
  Copyright terms: Public domain W3C validator