ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcnv GIF version

Theorem nfcnv 4603
Description: Bound-variable hypothesis builder for converse. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfcnv.1 𝑥𝐴
Assertion
Ref Expression
nfcnv 𝑥𝐴

Proof of Theorem nfcnv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 4436 . 2 𝐴 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐴𝑦}
2 nfcv 2228 . . . 4 𝑥𝑧
3 nfcnv.1 . . . 4 𝑥𝐴
4 nfcv 2228 . . . 4 𝑥𝑦
52, 3, 4nfbr 3881 . . 3 𝑥 𝑧𝐴𝑦
65nfopab 3898 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐴𝑦}
71, 6nfcxfr 2225 1 𝑥𝐴
Colors of variables: wff set class
Syntax hints:  wnfc 2215   class class class wbr 3837  {copab 3890  ccnv 4427
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-cnv 4436
This theorem is referenced by:  nfrn  4668  nffun  5024  nff1  5198  nfinf  6691
  Copyright terms: Public domain W3C validator