Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfcnv | GIF version |
Description: Bound-variable hypothesis builder for converse. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfcnv.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcnv | ⊢ Ⅎ𝑥◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 4612 | . 2 ⊢ ◡𝐴 = {〈𝑦, 𝑧〉 ∣ 𝑧𝐴𝑦} | |
2 | nfcv 2308 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
3 | nfcnv.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2308 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
5 | 2, 3, 4 | nfbr 4028 | . . 3 ⊢ Ⅎ𝑥 𝑧𝐴𝑦 |
6 | 5 | nfopab 4050 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ 𝑧𝐴𝑦} |
7 | 1, 6 | nfcxfr 2305 | 1 ⊢ Ⅎ𝑥◡𝐴 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2295 class class class wbr 3982 {copab 4042 ◡ccnv 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-cnv 4612 |
This theorem is referenced by: nfrn 4849 nffun 5211 nff1 5391 nfinf 6982 |
Copyright terms: Public domain | W3C validator |