![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvco | GIF version |
Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvco | ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1619 | . . . 4 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) | |
2 | vex 2763 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | vex 2763 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | brco 4834 | . . . 4 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
5 | vex 2763 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
6 | 3, 5 | brcnv 4846 | . . . . . 6 ⊢ (𝑦◡𝐴𝑧 ↔ 𝑧𝐴𝑦) |
7 | 5, 2 | brcnv 4846 | . . . . . 6 ⊢ (𝑧◡𝐵𝑥 ↔ 𝑥𝐵𝑧) |
8 | 6, 7 | anbi12i 460 | . . . . 5 ⊢ ((𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ (𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
9 | 8 | exbii 1616 | . . . 4 ⊢ (∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
10 | 1, 4, 9 | 3bitr4i 212 | . . 3 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)) |
11 | 10 | opabbii 4097 | . 2 ⊢ {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} |
12 | df-cnv 4668 | . 2 ⊢ ◡(𝐴 ∘ 𝐵) = {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} | |
13 | df-co 4669 | . 2 ⊢ (◡𝐵 ∘ ◡𝐴) = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} | |
14 | 11, 12, 13 | 3eqtr4i 2224 | 1 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 class class class wbr 4030 {copab 4090 ◡ccnv 4659 ∘ ccom 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-cnv 4668 df-co 4669 |
This theorem is referenced by: rncoss 4933 rncoeq 4936 dmco 5175 cores2 5179 co01 5181 coi2 5183 relcnvtr 5186 dfdm2 5201 f1co 5472 cofunex2g 6164 caseinj 7150 djuinj 7167 cnco 14400 hmeoco 14495 |
Copyright terms: Public domain | W3C validator |