| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-rel | GIF version | ||
| Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 5179 and dfrel3 5186. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-rel | ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wrel 4724 | . 2 wff Rel 𝐴 |
| 3 | cvv 2799 | . . . 4 class V | |
| 4 | 3, 3 | cxp 4717 | . . 3 class (V × V) |
| 5 | 1, 4 | wss 3197 | . 2 wff 𝐴 ⊆ (V × V) |
| 6 | 2, 5 | wb 105 | 1 wff (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
| Colors of variables: wff set class |
| This definition is referenced by: brrelex12 4757 0nelrel 4765 releq 4801 nfrel 4804 sbcrel 4805 relss 4806 ssrel 4807 elrel 4821 relsng 4822 relsn 4824 relxp 4828 relun 4836 reliun 4840 reliin 4841 rel0 4844 relopabiv 4845 relopabi 4847 relop 4872 eqbrrdva 4892 elreldm 4950 issref 5111 cnvcnv 5181 relrelss 5255 cnviinm 5270 nfunv 5351 funinsn 5370 oprabss 6096 relmptopab 6213 1st2nd 6333 1stdm 6334 releldm2 6337 reldmtpos 6405 dmtpos 6408 dftpos4 6415 tpostpos 6416 iinerm 6762 fundmen 6967 frecuzrdgtcl 10642 frecuzrdgfunlem 10649 relelbasov 13103 reldvg 15361 |
| Copyright terms: Public domain | W3C validator |