![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-rel | GIF version |
Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 5117 and dfrel3 5124. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-rel | ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wrel 4665 | . 2 wff Rel 𝐴 |
3 | cvv 2760 | . . . 4 class V | |
4 | 3, 3 | cxp 4658 | . . 3 class (V × V) |
5 | 1, 4 | wss 3154 | . 2 wff 𝐴 ⊆ (V × V) |
6 | 2, 5 | wb 105 | 1 wff (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
Colors of variables: wff set class |
This definition is referenced by: brrelex12 4698 0nelrel 4706 releq 4742 nfrel 4745 sbcrel 4746 relss 4747 ssrel 4748 elrel 4762 relsng 4763 relsn 4765 relxp 4769 relun 4777 reliun 4781 reliin 4782 rel0 4785 relopabiv 4786 relopabi 4788 relop 4813 eqbrrdva 4833 elreldm 4889 issref 5049 cnvcnv 5119 relrelss 5193 cnviinm 5208 nfunv 5288 funinsn 5304 oprabss 6005 1st2nd 6236 1stdm 6237 releldm2 6240 reldmtpos 6308 dmtpos 6311 dftpos4 6318 tpostpos 6319 iinerm 6663 fundmen 6862 frecuzrdgtcl 10486 frecuzrdgfunlem 10493 relelbasov 12683 reldvdsrsrg 13591 reldvg 14858 |
Copyright terms: Public domain | W3C validator |