| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-rel | GIF version | ||
| Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 5155 and dfrel3 5162. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-rel | ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wrel 4701 | . 2 wff Rel 𝐴 |
| 3 | cvv 2779 | . . . 4 class V | |
| 4 | 3, 3 | cxp 4694 | . . 3 class (V × V) |
| 5 | 1, 4 | wss 3177 | . 2 wff 𝐴 ⊆ (V × V) |
| 6 | 2, 5 | wb 105 | 1 wff (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
| Colors of variables: wff set class |
| This definition is referenced by: brrelex12 4734 0nelrel 4742 releq 4778 nfrel 4781 sbcrel 4782 relss 4783 ssrel 4784 elrel 4798 relsng 4799 relsn 4801 relxp 4805 relun 4813 reliun 4817 reliin 4818 rel0 4821 relopabiv 4822 relopabi 4824 relop 4849 eqbrrdva 4869 elreldm 4926 issref 5087 cnvcnv 5157 relrelss 5231 cnviinm 5246 nfunv 5327 funinsn 5346 oprabss 6061 1st2nd 6297 1stdm 6298 releldm2 6301 reldmtpos 6369 dmtpos 6372 dftpos4 6379 tpostpos 6380 iinerm 6724 fundmen 6929 frecuzrdgtcl 10601 frecuzrdgfunlem 10608 relelbasov 13061 reldvdsrsrg 14021 reldvg 15318 |
| Copyright terms: Public domain | W3C validator |