Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-rel | GIF version |
Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 5071 and dfrel3 5078. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-rel | ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wrel 4625 | . 2 wff Rel 𝐴 |
3 | cvv 2735 | . . . 4 class V | |
4 | 3, 3 | cxp 4618 | . . 3 class (V × V) |
5 | 1, 4 | wss 3127 | . 2 wff 𝐴 ⊆ (V × V) |
6 | 2, 5 | wb 105 | 1 wff (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
Colors of variables: wff set class |
This definition is referenced by: brrelex12 4658 0nelrel 4666 releq 4702 nfrel 4705 sbcrel 4706 relss 4707 ssrel 4708 elrel 4722 relsng 4723 relsn 4725 relxp 4729 relun 4737 reliun 4741 reliin 4742 rel0 4745 relopabi 4746 relop 4770 eqbrrdva 4790 elreldm 4846 issref 5003 cnvcnv 5073 relrelss 5147 cnviinm 5162 nfunv 5241 funinsn 5257 oprabss 5951 1st2nd 6172 1stdm 6173 releldm2 6176 reldmtpos 6244 dmtpos 6247 dftpos4 6254 tpostpos 6255 iinerm 6597 fundmen 6796 frecuzrdgtcl 10380 frecuzrdgfunlem 10387 reldvg 13699 |
Copyright terms: Public domain | W3C validator |