| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-rel | GIF version | ||
| Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 5138 and dfrel3 5145. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-rel | ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wrel 4684 | . 2 wff Rel 𝐴 |
| 3 | cvv 2773 | . . . 4 class V | |
| 4 | 3, 3 | cxp 4677 | . . 3 class (V × V) |
| 5 | 1, 4 | wss 3167 | . 2 wff 𝐴 ⊆ (V × V) |
| 6 | 2, 5 | wb 105 | 1 wff (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
| Colors of variables: wff set class |
| This definition is referenced by: brrelex12 4717 0nelrel 4725 releq 4761 nfrel 4764 sbcrel 4765 relss 4766 ssrel 4767 elrel 4781 relsng 4782 relsn 4784 relxp 4788 relun 4796 reliun 4800 reliin 4801 rel0 4804 relopabiv 4805 relopabi 4807 relop 4832 eqbrrdva 4852 elreldm 4909 issref 5070 cnvcnv 5140 relrelss 5214 cnviinm 5229 nfunv 5309 funinsn 5328 oprabss 6038 1st2nd 6274 1stdm 6275 releldm2 6278 reldmtpos 6346 dmtpos 6349 dftpos4 6356 tpostpos 6357 iinerm 6701 fundmen 6905 frecuzrdgtcl 10564 frecuzrdgfunlem 10571 relelbasov 12938 reldvdsrsrg 13898 reldvg 15195 |
| Copyright terms: Public domain | W3C validator |