![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-rel | GIF version |
Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 5079 and dfrel3 5086. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-rel | ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wrel 4631 | . 2 wff Rel 𝐴 |
3 | cvv 2737 | . . . 4 class V | |
4 | 3, 3 | cxp 4624 | . . 3 class (V × V) |
5 | 1, 4 | wss 3129 | . 2 wff 𝐴 ⊆ (V × V) |
6 | 2, 5 | wb 105 | 1 wff (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
Colors of variables: wff set class |
This definition is referenced by: brrelex12 4664 0nelrel 4672 releq 4708 nfrel 4711 sbcrel 4712 relss 4713 ssrel 4714 elrel 4728 relsng 4729 relsn 4731 relxp 4735 relun 4743 reliun 4747 reliin 4748 rel0 4751 relopabi 4752 relop 4777 eqbrrdva 4797 elreldm 4853 issref 5011 cnvcnv 5081 relrelss 5155 cnviinm 5170 nfunv 5249 funinsn 5265 oprabss 5960 1st2nd 6181 1stdm 6182 releldm2 6185 reldmtpos 6253 dmtpos 6256 dftpos4 6263 tpostpos 6264 iinerm 6606 fundmen 6805 frecuzrdgtcl 10411 frecuzrdgfunlem 10418 reldvdsrsrg 13259 reldvg 14118 |
Copyright terms: Public domain | W3C validator |