Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-rel | GIF version |
Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 5054 and dfrel3 5061. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-rel | ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wrel 4609 | . 2 wff Rel 𝐴 |
3 | cvv 2726 | . . . 4 class V | |
4 | 3, 3 | cxp 4602 | . . 3 class (V × V) |
5 | 1, 4 | wss 3116 | . 2 wff 𝐴 ⊆ (V × V) |
6 | 2, 5 | wb 104 | 1 wff (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
Colors of variables: wff set class |
This definition is referenced by: brrelex12 4642 0nelrel 4650 releq 4686 nfrel 4689 sbcrel 4690 relss 4691 ssrel 4692 elrel 4706 relsng 4707 relsn 4709 relxp 4713 relun 4721 reliun 4725 reliin 4726 rel0 4729 relopabi 4730 relop 4754 eqbrrdva 4774 elreldm 4830 issref 4986 cnvcnv 5056 relrelss 5130 cnviinm 5145 nfunv 5221 funinsn 5237 oprabss 5928 1st2nd 6149 1stdm 6150 releldm2 6153 reldmtpos 6221 dmtpos 6224 dftpos4 6231 tpostpos 6232 iinerm 6573 fundmen 6772 frecuzrdgtcl 10347 frecuzrdgfunlem 10354 reldvg 13288 |
Copyright terms: Public domain | W3C validator |