| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-rel | GIF version | ||
| Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 5121 and dfrel3 5128. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-rel | ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wrel 4669 | . 2 wff Rel 𝐴 |
| 3 | cvv 2763 | . . . 4 class V | |
| 4 | 3, 3 | cxp 4662 | . . 3 class (V × V) |
| 5 | 1, 4 | wss 3157 | . 2 wff 𝐴 ⊆ (V × V) |
| 6 | 2, 5 | wb 105 | 1 wff (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
| Colors of variables: wff set class |
| This definition is referenced by: brrelex12 4702 0nelrel 4710 releq 4746 nfrel 4749 sbcrel 4750 relss 4751 ssrel 4752 elrel 4766 relsng 4767 relsn 4769 relxp 4773 relun 4781 reliun 4785 reliin 4786 rel0 4789 relopabiv 4790 relopabi 4792 relop 4817 eqbrrdva 4837 elreldm 4893 issref 5053 cnvcnv 5123 relrelss 5197 cnviinm 5212 nfunv 5292 funinsn 5308 oprabss 6009 1st2nd 6240 1stdm 6241 releldm2 6244 reldmtpos 6312 dmtpos 6315 dftpos4 6322 tpostpos 6323 iinerm 6667 fundmen 6866 frecuzrdgtcl 10506 frecuzrdgfunlem 10513 relelbasov 12750 reldvdsrsrg 13658 reldvg 14925 |
| Copyright terms: Public domain | W3C validator |