| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2omotap | GIF version | ||
| Description: If there is at most one tight apartness on 2o, excluded middle follows. Based on online discussions by Tom de Jong, Andrew W Swan, and Martin Escardo. (Contributed by Jim Kingdon, 6-Feb-2025.) |
| Ref | Expression |
|---|---|
| 2omotap | ⊢ (∃*𝑟 𝑟 TAp 2o → EXMID) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2omotaplemst 7440 | . . . . 5 ⊢ ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝑥 = {∅}) → 𝑥 = {∅}) | |
| 2 | 1 | ex 115 | . . . 4 ⊢ (∃*𝑟 𝑟 TAp 2o → (¬ ¬ 𝑥 = {∅} → 𝑥 = {∅})) |
| 3 | df-stab 836 | . . . 4 ⊢ (STAB 𝑥 = {∅} ↔ (¬ ¬ 𝑥 = {∅} → 𝑥 = {∅})) | |
| 4 | 2, 3 | sylibr 134 | . . 3 ⊢ (∃*𝑟 𝑟 TAp 2o → STAB 𝑥 = {∅}) |
| 5 | 4 | adantr 276 | . 2 ⊢ ((∃*𝑟 𝑟 TAp 2o ∧ 𝑥 ⊆ {∅}) → STAB 𝑥 = {∅}) |
| 6 | 5 | exmid1stab 4291 | 1 ⊢ (∃*𝑟 𝑟 TAp 2o → EXMID) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 STAB wstab 835 = wceq 1395 ∃*wmo 2078 ⊆ wss 3197 ∅c0 3491 {csn 3666 EXMIDwem 4277 2oc2o 6554 TAp wtap 7431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-exmid 4278 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-1o 6560 df-2o 6561 df-pap 7430 df-tap 7432 |
| This theorem is referenced by: exmidmotap 7443 |
| Copyright terms: Public domain | W3C validator |