ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2omotap GIF version

Theorem 2omotap 7406
Description: If there is at most one tight apartness on 2o, excluded middle follows. Based on online discussions by Tom de Jong, Andrew W Swan, and Martin Escardo. (Contributed by Jim Kingdon, 6-Feb-2025.)
Assertion
Ref Expression
2omotap (∃*𝑟 𝑟 TAp 2oEXMID)

Proof of Theorem 2omotap
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2omotaplemst 7405 . . . . 5 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝑥 = {∅}) → 𝑥 = {∅})
21ex 115 . . . 4 (∃*𝑟 𝑟 TAp 2o → (¬ ¬ 𝑥 = {∅} → 𝑥 = {∅}))
3 df-stab 833 . . . 4 (STAB 𝑥 = {∅} ↔ (¬ ¬ 𝑥 = {∅} → 𝑥 = {∅}))
42, 3sylibr 134 . . 3 (∃*𝑟 𝑟 TAp 2oSTAB 𝑥 = {∅})
54adantr 276 . 2 ((∃*𝑟 𝑟 TAp 2o𝑥 ⊆ {∅}) → STAB 𝑥 = {∅})
65exmid1stab 4268 1 (∃*𝑟 𝑟 TAp 2oEXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  STAB wstab 832   = wceq 1373  ∃*wmo 2056  wss 3174  c0 3468  {csn 3643  EXMIDwem 4254  2oc2o 6519   TAp wtap 7396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-tr 4159  df-exmid 4255  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-1o 6525  df-2o 6526  df-pap 7395  df-tap 7397
This theorem is referenced by:  exmidmotap  7408
  Copyright terms: Public domain W3C validator