![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2omotap | GIF version |
Description: If there is at most one tight apartness on 2o, excluded middle follows. Based on online discussions by Tom de Jong, Andrew W Swan, and Martin Escardo. (Contributed by Jim Kingdon, 6-Feb-2025.) |
Ref | Expression |
---|---|
2omotap | ⊢ (∃*𝑟 𝑟 TAp 2o → EXMID) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2omotaplemst 7320 | . . . . 5 ⊢ ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝑥 = {∅}) → 𝑥 = {∅}) | |
2 | 1 | ex 115 | . . . 4 ⊢ (∃*𝑟 𝑟 TAp 2o → (¬ ¬ 𝑥 = {∅} → 𝑥 = {∅})) |
3 | df-stab 832 | . . . 4 ⊢ (STAB 𝑥 = {∅} ↔ (¬ ¬ 𝑥 = {∅} → 𝑥 = {∅})) | |
4 | 2, 3 | sylibr 134 | . . 3 ⊢ (∃*𝑟 𝑟 TAp 2o → STAB 𝑥 = {∅}) |
5 | 4 | adantr 276 | . 2 ⊢ ((∃*𝑟 𝑟 TAp 2o ∧ 𝑥 ⊆ {∅}) → STAB 𝑥 = {∅}) |
6 | 5 | exmid1stab 4238 | 1 ⊢ (∃*𝑟 𝑟 TAp 2o → EXMID) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 STAB wstab 831 = wceq 1364 ∃*wmo 2043 ⊆ wss 3154 ∅c0 3447 {csn 3619 EXMIDwem 4224 2oc2o 6465 TAp wtap 7311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-tr 4129 df-exmid 4225 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-1o 6471 df-2o 6472 df-pap 7310 df-tap 7312 |
This theorem is referenced by: exmidmotap 7323 |
Copyright terms: Public domain | W3C validator |