| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2omotap | GIF version | ||
| Description: If there is at most one tight apartness on 2o, excluded middle follows. Based on online discussions by Tom de Jong, Andrew W Swan, and Martin Escardo. (Contributed by Jim Kingdon, 6-Feb-2025.) |
| Ref | Expression |
|---|---|
| 2omotap | ⊢ (∃*𝑟 𝑟 TAp 2o → EXMID) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2omotaplemst 7405 | . . . . 5 ⊢ ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝑥 = {∅}) → 𝑥 = {∅}) | |
| 2 | 1 | ex 115 | . . . 4 ⊢ (∃*𝑟 𝑟 TAp 2o → (¬ ¬ 𝑥 = {∅} → 𝑥 = {∅})) |
| 3 | df-stab 833 | . . . 4 ⊢ (STAB 𝑥 = {∅} ↔ (¬ ¬ 𝑥 = {∅} → 𝑥 = {∅})) | |
| 4 | 2, 3 | sylibr 134 | . . 3 ⊢ (∃*𝑟 𝑟 TAp 2o → STAB 𝑥 = {∅}) |
| 5 | 4 | adantr 276 | . 2 ⊢ ((∃*𝑟 𝑟 TAp 2o ∧ 𝑥 ⊆ {∅}) → STAB 𝑥 = {∅}) |
| 6 | 5 | exmid1stab 4268 | 1 ⊢ (∃*𝑟 𝑟 TAp 2o → EXMID) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 STAB wstab 832 = wceq 1373 ∃*wmo 2056 ⊆ wss 3174 ∅c0 3468 {csn 3643 EXMIDwem 4254 2oc2o 6519 TAp wtap 7396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-tr 4159 df-exmid 4255 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-1o 6525 df-2o 6526 df-pap 7395 df-tap 7397 |
| This theorem is referenced by: exmidmotap 7408 |
| Copyright terms: Public domain | W3C validator |