ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2omotap GIF version

Theorem 2omotap 7321
Description: If there is at most one tight apartness on 2o, excluded middle follows. Based on online discussions by Tom de Jong, Andrew W Swan, and Martin Escardo. (Contributed by Jim Kingdon, 6-Feb-2025.)
Assertion
Ref Expression
2omotap (∃*𝑟 𝑟 TAp 2oEXMID)

Proof of Theorem 2omotap
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2omotaplemst 7320 . . . . 5 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝑥 = {∅}) → 𝑥 = {∅})
21ex 115 . . . 4 (∃*𝑟 𝑟 TAp 2o → (¬ ¬ 𝑥 = {∅} → 𝑥 = {∅}))
3 df-stab 832 . . . 4 (STAB 𝑥 = {∅} ↔ (¬ ¬ 𝑥 = {∅} → 𝑥 = {∅}))
42, 3sylibr 134 . . 3 (∃*𝑟 𝑟 TAp 2oSTAB 𝑥 = {∅})
54adantr 276 . 2 ((∃*𝑟 𝑟 TAp 2o𝑥 ⊆ {∅}) → STAB 𝑥 = {∅})
65exmid1stab 4238 1 (∃*𝑟 𝑟 TAp 2oEXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  STAB wstab 831   = wceq 1364  ∃*wmo 2043  wss 3154  c0 3447  {csn 3619  EXMIDwem 4224  2oc2o 6465   TAp wtap 7311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-tr 4129  df-exmid 4225  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-1o 6471  df-2o 6472  df-pap 7310  df-tap 7312
This theorem is referenced by:  exmidmotap  7323
  Copyright terms: Public domain W3C validator