| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2omotap | GIF version | ||
| Description: If there is at most one tight apartness on 2o, excluded middle follows. Based on online discussions by Tom de Jong, Andrew W Swan, and Martin Escardo. (Contributed by Jim Kingdon, 6-Feb-2025.) |
| Ref | Expression |
|---|---|
| 2omotap | ⊢ (∃*𝑟 𝑟 TAp 2o → EXMID) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2omotaplemst 7370 | . . . . 5 ⊢ ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝑥 = {∅}) → 𝑥 = {∅}) | |
| 2 | 1 | ex 115 | . . . 4 ⊢ (∃*𝑟 𝑟 TAp 2o → (¬ ¬ 𝑥 = {∅} → 𝑥 = {∅})) |
| 3 | df-stab 833 | . . . 4 ⊢ (STAB 𝑥 = {∅} ↔ (¬ ¬ 𝑥 = {∅} → 𝑥 = {∅})) | |
| 4 | 2, 3 | sylibr 134 | . . 3 ⊢ (∃*𝑟 𝑟 TAp 2o → STAB 𝑥 = {∅}) |
| 5 | 4 | adantr 276 | . 2 ⊢ ((∃*𝑟 𝑟 TAp 2o ∧ 𝑥 ⊆ {∅}) → STAB 𝑥 = {∅}) |
| 6 | 5 | exmid1stab 4252 | 1 ⊢ (∃*𝑟 𝑟 TAp 2o → EXMID) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 STAB wstab 832 = wceq 1373 ∃*wmo 2055 ⊆ wss 3166 ∅c0 3460 {csn 3633 EXMIDwem 4238 2oc2o 6496 TAp wtap 7361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-tr 4143 df-exmid 4239 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-1o 6502 df-2o 6503 df-pap 7360 df-tap 7362 |
| This theorem is referenced by: exmidmotap 7373 |
| Copyright terms: Public domain | W3C validator |