Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trirec0xor GIF version

Theorem trirec0xor 15065
Description: Version of trirec0 15064 with exclusive-or.

The definition of a discrete field is sometimes stated in terms of exclusive-or but as proved here, this is equivalent to inclusive-or because the two disjuncts cannot be simultaneously true. (Contributed by Jim Kingdon, 10-Jun-2024.)

Assertion
Ref Expression
trirec0xor (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem trirec0xor
StepHypRef Expression
1 trirec0 15064 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0))
2 1ne0 9000 . . . . . . . 8 1 ≠ 0
32nesymi 2403 . . . . . . 7 ¬ 0 = 1
4 simpr 110 . . . . . . . . . . 11 (((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) → 𝑥 = 0)
54oveq1d 5903 . . . . . . . . . 10 (((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) → (𝑥 · 𝑧) = (0 · 𝑧))
6 mul02lem2 8358 . . . . . . . . . 10 (𝑧 ∈ ℝ → (0 · 𝑧) = 0)
75, 6sylan9eqr 2242 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)) → (𝑥 · 𝑧) = 0)
8 simprl 529 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)) → (𝑥 · 𝑧) = 1)
97, 8eqtr3d 2222 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)) → 0 = 1)
109rexlimiva 2599 . . . . . . 7 (∃𝑧 ∈ ℝ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) → 0 = 1)
113, 10mto 663 . . . . . 6 ¬ ∃𝑧 ∈ ℝ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)
12 r19.41v 2643 . . . . . 6 (∃𝑧 ∈ ℝ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) ↔ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∧ 𝑥 = 0))
1311, 12mtbi 671 . . . . 5 ¬ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)
1413biantru 302 . . . 4 ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ↔ ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ∧ ¬ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)))
15 df-xor 1386 . . . 4 ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0) ↔ ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ∧ ¬ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)))
1614, 15bitr4i 187 . . 3 ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ↔ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0))
1716ralbii 2493 . 2 (∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0))
181, 17bitri 184 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 709  w3o 978   = wceq 1363  wxo 1385  wcel 2158  wral 2465  wrex 2466   class class class wbr 4015  (class class class)co 5888  cr 7823  0cc0 7824  1c1 7825   · cmul 7829   < clt 8005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-xor 1386  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-po 4308  df-iso 4309  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator