Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trirec0xor GIF version

Theorem trirec0xor 15716
Description: Version of trirec0 15715 with exclusive-or.

The definition of a discrete field is sometimes stated in terms of exclusive-or but as proved here, this is equivalent to inclusive-or because the two disjuncts cannot be simultaneously true. (Contributed by Jim Kingdon, 10-Jun-2024.)

Assertion
Ref Expression
trirec0xor (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem trirec0xor
StepHypRef Expression
1 trirec0 15715 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0))
2 1ne0 9061 . . . . . . . 8 1 ≠ 0
32nesymi 2413 . . . . . . 7 ¬ 0 = 1
4 simpr 110 . . . . . . . . . . 11 (((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) → 𝑥 = 0)
54oveq1d 5938 . . . . . . . . . 10 (((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) → (𝑥 · 𝑧) = (0 · 𝑧))
6 mul02lem2 8417 . . . . . . . . . 10 (𝑧 ∈ ℝ → (0 · 𝑧) = 0)
75, 6sylan9eqr 2251 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)) → (𝑥 · 𝑧) = 0)
8 simprl 529 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)) → (𝑥 · 𝑧) = 1)
97, 8eqtr3d 2231 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)) → 0 = 1)
109rexlimiva 2609 . . . . . . 7 (∃𝑧 ∈ ℝ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) → 0 = 1)
113, 10mto 663 . . . . . 6 ¬ ∃𝑧 ∈ ℝ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)
12 r19.41v 2653 . . . . . 6 (∃𝑧 ∈ ℝ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) ↔ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∧ 𝑥 = 0))
1311, 12mtbi 671 . . . . 5 ¬ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)
1413biantru 302 . . . 4 ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ↔ ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ∧ ¬ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)))
15 df-xor 1387 . . . 4 ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0) ↔ ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ∧ ¬ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)))
1614, 15bitr4i 187 . . 3 ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ↔ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0))
1716ralbii 2503 . 2 (∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0))
181, 17bitri 184 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 709  w3o 979   = wceq 1364  wxo 1386  wcel 2167  wral 2475  wrex 2476   class class class wbr 4034  (class class class)co 5923  cr 7881  0cc0 7882  1c1 7883   · cmul 7887   < clt 8064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator