| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > trirec0xor | GIF version | ||
| Description: Version of trirec0 16343 with exclusive-or.
The definition of a discrete field is sometimes stated in terms of exclusive-or but as proved here, this is equivalent to inclusive-or because the two disjuncts cannot be simultaneously true. (Contributed by Jim Kingdon, 10-Jun-2024.) |
| Ref | Expression |
|---|---|
| trirec0xor | ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trirec0 16343 | . 2 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0)) | |
| 2 | 1ne0 9166 | . . . . . . . 8 ⊢ 1 ≠ 0 | |
| 3 | 2 | nesymi 2446 | . . . . . . 7 ⊢ ¬ 0 = 1 |
| 4 | simpr 110 | . . . . . . . . . . 11 ⊢ (((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) → 𝑥 = 0) | |
| 5 | 4 | oveq1d 6009 | . . . . . . . . . 10 ⊢ (((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) → (𝑥 · 𝑧) = (0 · 𝑧)) |
| 6 | mul02lem2 8522 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ → (0 · 𝑧) = 0) | |
| 7 | 5, 6 | sylan9eqr 2284 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ ∧ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)) → (𝑥 · 𝑧) = 0) |
| 8 | simprl 529 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ ∧ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)) → (𝑥 · 𝑧) = 1) | |
| 9 | 7, 8 | eqtr3d 2264 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ ∧ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)) → 0 = 1) |
| 10 | 9 | rexlimiva 2643 | . . . . . . 7 ⊢ (∃𝑧 ∈ ℝ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) → 0 = 1) |
| 11 | 3, 10 | mto 666 | . . . . . 6 ⊢ ¬ ∃𝑧 ∈ ℝ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) |
| 12 | r19.41v 2687 | . . . . . 6 ⊢ (∃𝑧 ∈ ℝ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) ↔ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)) | |
| 13 | 11, 12 | mtbi 674 | . . . . 5 ⊢ ¬ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) |
| 14 | 13 | biantru 302 | . . . 4 ⊢ ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ↔ ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ∧ ¬ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∧ 𝑥 = 0))) |
| 15 | df-xor 1418 | . . . 4 ⊢ ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0) ↔ ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ∧ ¬ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∧ 𝑥 = 0))) | |
| 16 | 14, 15 | bitr4i 187 | . . 3 ⊢ ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ↔ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0)) |
| 17 | 16 | ralbii 2536 | . 2 ⊢ (∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0)) |
| 18 | 1, 17 | bitri 184 | 1 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∨ wo 713 ∨ w3o 1001 = wceq 1395 ⊻ wxo 1417 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 class class class wbr 4082 (class class class)co 5994 ℝcr 7986 0cc0 7987 1c1 7988 · cmul 7992 < clt 8169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4381 df-po 4384 df-iso 4385 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |