![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > trirec0xor | GIF version |
Description: Version of trirec0 15064 with exclusive-or.
The definition of a discrete field is sometimes stated in terms of exclusive-or but as proved here, this is equivalent to inclusive-or because the two disjuncts cannot be simultaneously true. (Contributed by Jim Kingdon, 10-Jun-2024.) |
Ref | Expression |
---|---|
trirec0xor | ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trirec0 15064 | . 2 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0)) | |
2 | 1ne0 9000 | . . . . . . . 8 ⊢ 1 ≠ 0 | |
3 | 2 | nesymi 2403 | . . . . . . 7 ⊢ ¬ 0 = 1 |
4 | simpr 110 | . . . . . . . . . . 11 ⊢ (((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) → 𝑥 = 0) | |
5 | 4 | oveq1d 5903 | . . . . . . . . . 10 ⊢ (((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) → (𝑥 · 𝑧) = (0 · 𝑧)) |
6 | mul02lem2 8358 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ → (0 · 𝑧) = 0) | |
7 | 5, 6 | sylan9eqr 2242 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ ∧ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)) → (𝑥 · 𝑧) = 0) |
8 | simprl 529 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ ∧ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)) → (𝑥 · 𝑧) = 1) | |
9 | 7, 8 | eqtr3d 2222 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ ∧ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)) → 0 = 1) |
10 | 9 | rexlimiva 2599 | . . . . . . 7 ⊢ (∃𝑧 ∈ ℝ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) → 0 = 1) |
11 | 3, 10 | mto 663 | . . . . . 6 ⊢ ¬ ∃𝑧 ∈ ℝ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) |
12 | r19.41v 2643 | . . . . . 6 ⊢ (∃𝑧 ∈ ℝ ((𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) ↔ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∧ 𝑥 = 0)) | |
13 | 11, 12 | mtbi 671 | . . . . 5 ⊢ ¬ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∧ 𝑥 = 0) |
14 | 13 | biantru 302 | . . . 4 ⊢ ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ↔ ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ∧ ¬ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∧ 𝑥 = 0))) |
15 | df-xor 1386 | . . . 4 ⊢ ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0) ↔ ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ∧ ¬ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∧ 𝑥 = 0))) | |
16 | 14, 15 | bitr4i 187 | . . 3 ⊢ ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ↔ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0)) |
17 | 16 | ralbii 2493 | . 2 ⊢ (∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0)) |
18 | 1, 17 | bitri 184 | 1 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∨ w3o 978 = wceq 1363 ⊻ wxo 1385 ∈ wcel 2158 ∀wral 2465 ∃wrex 2466 class class class wbr 4015 (class class class)co 5888 ℝcr 7823 0cc0 7824 1c1 7825 · cmul 7829 < clt 8005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-mulrcl 7923 ax-addcom 7924 ax-mulcom 7925 ax-addass 7926 ax-mulass 7927 ax-distr 7928 ax-i2m1 7929 ax-0lt1 7930 ax-1rid 7931 ax-0id 7932 ax-rnegex 7933 ax-precex 7934 ax-cnre 7935 ax-pre-ltirr 7936 ax-pre-ltwlin 7937 ax-pre-lttrn 7938 ax-pre-apti 7939 ax-pre-ltadd 7940 ax-pre-mulgt0 7941 ax-pre-mulext 7942 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-xor 1386 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-id 4305 df-po 4308 df-iso 4309 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-iota 5190 df-fun 5230 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8007 df-mnf 8008 df-xr 8009 df-ltxr 8010 df-le 8011 df-sub 8143 df-neg 8144 df-reap 8545 df-ap 8552 df-div 8643 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |