![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordtr | GIF version |
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dford3 4218 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
2 | 1 | simplbi 269 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wral 2370 Tr wtr 3958 Ord word 4213 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-iord 4217 |
This theorem is referenced by: ordelss 4230 ordin 4236 ordtr1 4239 orduniss 4276 ontrci 4278 ordon 4331 ordsucim 4345 ordsucss 4349 onsucsssucr 4354 onintonm 4362 ordsucunielexmid 4375 ordn2lp 4389 onsucuni2 4408 nlimsucg 4410 ordpwsucss 4411 tfrexlem 6137 nnsucuniel 6296 ctmlemr 6870 nnnninf 6894 nnsf 12604 peano4nninf 12605 nninfalllemn 12607 |
Copyright terms: Public domain | W3C validator |