| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtr | GIF version | ||
| Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dford3 4415 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wral 2484 Tr wtr 4143 Ord word 4410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-iord 4414 |
| This theorem is referenced by: ordelss 4427 ordin 4433 ordtr1 4436 orduniss 4473 ontrci 4475 ordon 4535 ordsucim 4549 ordsucss 4553 onsucsssucr 4558 onintonm 4566 ordsucunielexmid 4580 ordn2lp 4594 onsucuni2 4613 nlimsucg 4615 ordpwsucss 4616 tfrexlem 6422 nnsucuniel 6583 ctmlemr 7212 nnnninf 7230 nnnninfeq 7232 nnnninfeq2 7233 ctinf 12834 nnsf 15979 peano4nninf 15980 nnnninfex 15996 |
| Copyright terms: Public domain | W3C validator |