ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtr GIF version

Theorem ordtr 4363
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordtr (Ord 𝐴 → Tr 𝐴)

Proof of Theorem ordtr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dford3 4352 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
21simplbi 272 1 (Ord 𝐴 → Tr 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wral 2448  Tr wtr 4087  Ord word 4347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-iord 4351
This theorem is referenced by:  ordelss  4364  ordin  4370  ordtr1  4373  orduniss  4410  ontrci  4412  ordon  4470  ordsucim  4484  ordsucss  4488  onsucsssucr  4493  onintonm  4501  ordsucunielexmid  4515  ordn2lp  4529  onsucuni2  4548  nlimsucg  4550  ordpwsucss  4551  tfrexlem  6313  nnsucuniel  6474  ctmlemr  7085  nnnninf  7102  nnnninfeq  7104  nnnninfeq2  7105  ctinf  12385  nnsf  14038  peano4nninf  14039
  Copyright terms: Public domain W3C validator