Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordtr | GIF version |
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dford3 4361 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
2 | 1 | simplbi 274 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wral 2453 Tr wtr 4096 Ord word 4356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-iord 4360 |
This theorem is referenced by: ordelss 4373 ordin 4379 ordtr1 4382 orduniss 4419 ontrci 4421 ordon 4479 ordsucim 4493 ordsucss 4497 onsucsssucr 4502 onintonm 4510 ordsucunielexmid 4524 ordn2lp 4538 onsucuni2 4557 nlimsucg 4559 ordpwsucss 4560 tfrexlem 6325 nnsucuniel 6486 ctmlemr 7097 nnnninf 7114 nnnninfeq 7116 nnnninfeq2 7117 ctinf 12396 nnsf 14295 peano4nninf 14296 |
Copyright terms: Public domain | W3C validator |