ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtr GIF version

Theorem ordtr 4372
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordtr (Ord 𝐴 → Tr 𝐴)

Proof of Theorem ordtr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dford3 4361 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
21simplbi 274 1 (Ord 𝐴 → Tr 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wral 2453  Tr wtr 4096  Ord word 4356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-iord 4360
This theorem is referenced by:  ordelss  4373  ordin  4379  ordtr1  4382  orduniss  4419  ontrci  4421  ordon  4479  ordsucim  4493  ordsucss  4497  onsucsssucr  4502  onintonm  4510  ordsucunielexmid  4524  ordn2lp  4538  onsucuni2  4557  nlimsucg  4559  ordpwsucss  4560  tfrexlem  6325  nnsucuniel  6486  ctmlemr  7097  nnnninf  7114  nnnninfeq  7116  nnnninfeq2  7117  ctinf  12396  nnsf  14295  peano4nninf  14296
  Copyright terms: Public domain W3C validator