ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtr GIF version

Theorem ordtr 4229
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordtr (Ord 𝐴 → Tr 𝐴)

Proof of Theorem ordtr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dford3 4218 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
21simplbi 269 1 (Ord 𝐴 → Tr 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wral 2370  Tr wtr 3958  Ord word 4213
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-iord 4217
This theorem is referenced by:  ordelss  4230  ordin  4236  ordtr1  4239  orduniss  4276  ontrci  4278  ordon  4331  ordsucim  4345  ordsucss  4349  onsucsssucr  4354  onintonm  4362  ordsucunielexmid  4375  ordn2lp  4389  onsucuni2  4408  nlimsucg  4410  ordpwsucss  4411  tfrexlem  6137  nnsucuniel  6296  ctmlemr  6870  nnnninf  6894  nnsf  12604  peano4nninf  12605  nninfalllemn  12607
  Copyright terms: Public domain W3C validator