ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtr GIF version

Theorem ordtr 4379
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordtr (Ord 𝐴 → Tr 𝐴)

Proof of Theorem ordtr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dford3 4368 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
21simplbi 274 1 (Ord 𝐴 → Tr 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wral 2455  Tr wtr 4102  Ord word 4363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-iord 4367
This theorem is referenced by:  ordelss  4380  ordin  4386  ordtr1  4389  orduniss  4426  ontrci  4428  ordon  4486  ordsucim  4500  ordsucss  4504  onsucsssucr  4509  onintonm  4517  ordsucunielexmid  4531  ordn2lp  4545  onsucuni2  4564  nlimsucg  4566  ordpwsucss  4567  tfrexlem  6335  nnsucuniel  6496  ctmlemr  7107  nnnninf  7124  nnnninfeq  7126  nnnninfeq2  7127  ctinf  12431  nnsf  14757  peano4nninf  14758
  Copyright terms: Public domain W3C validator