| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtr | GIF version | ||
| Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dford3 4403 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wral 2475 Tr wtr 4132 Ord word 4398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-iord 4402 |
| This theorem is referenced by: ordelss 4415 ordin 4421 ordtr1 4424 orduniss 4461 ontrci 4463 ordon 4523 ordsucim 4537 ordsucss 4541 onsucsssucr 4546 onintonm 4554 ordsucunielexmid 4568 ordn2lp 4582 onsucuni2 4601 nlimsucg 4603 ordpwsucss 4604 tfrexlem 6401 nnsucuniel 6562 ctmlemr 7183 nnnninf 7201 nnnninfeq 7203 nnnninfeq2 7204 ctinf 12672 nnsf 15736 peano4nninf 15737 |
| Copyright terms: Public domain | W3C validator |