| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtr | GIF version | ||
| Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dford3 4414 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wral 2484 Tr wtr 4142 Ord word 4409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-iord 4413 |
| This theorem is referenced by: ordelss 4426 ordin 4432 ordtr1 4435 orduniss 4472 ontrci 4474 ordon 4534 ordsucim 4548 ordsucss 4552 onsucsssucr 4557 onintonm 4565 ordsucunielexmid 4579 ordn2lp 4593 onsucuni2 4612 nlimsucg 4614 ordpwsucss 4615 tfrexlem 6420 nnsucuniel 6581 ctmlemr 7210 nnnninf 7228 nnnninfeq 7230 nnnninfeq2 7231 ctinf 12801 nnsf 15942 peano4nninf 15943 nnnninfex 15959 |
| Copyright terms: Public domain | W3C validator |