Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordtr | GIF version |
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dford3 4345 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
2 | 1 | simplbi 272 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wral 2444 Tr wtr 4080 Ord word 4340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-iord 4344 |
This theorem is referenced by: ordelss 4357 ordin 4363 ordtr1 4366 orduniss 4403 ontrci 4405 ordon 4463 ordsucim 4477 ordsucss 4481 onsucsssucr 4486 onintonm 4494 ordsucunielexmid 4508 ordn2lp 4522 onsucuni2 4541 nlimsucg 4543 ordpwsucss 4544 tfrexlem 6302 nnsucuniel 6463 ctmlemr 7073 nnnninf 7090 nnnninfeq 7092 nnnninfeq2 7093 ctinf 12363 nnsf 13895 peano4nninf 13896 |
Copyright terms: Public domain | W3C validator |