ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtr GIF version

Theorem ordtr 4356
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordtr (Ord 𝐴 → Tr 𝐴)

Proof of Theorem ordtr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dford3 4345 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
21simplbi 272 1 (Ord 𝐴 → Tr 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wral 2444  Tr wtr 4080  Ord word 4340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-iord 4344
This theorem is referenced by:  ordelss  4357  ordin  4363  ordtr1  4366  orduniss  4403  ontrci  4405  ordon  4463  ordsucim  4477  ordsucss  4481  onsucsssucr  4486  onintonm  4494  ordsucunielexmid  4508  ordn2lp  4522  onsucuni2  4541  nlimsucg  4543  ordpwsucss  4544  tfrexlem  6302  nnsucuniel  6463  ctmlemr  7073  nnnninf  7090  nnnninfeq  7092  nnnninfeq2  7093  ctinf  12363  nnsf  13895  peano4nninf  13896
  Copyright terms: Public domain W3C validator