![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordtr | GIF version |
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dford3 4399 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
2 | 1 | simplbi 274 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wral 2472 Tr wtr 4128 Ord word 4394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-iord 4398 |
This theorem is referenced by: ordelss 4411 ordin 4417 ordtr1 4420 orduniss 4457 ontrci 4459 ordon 4519 ordsucim 4533 ordsucss 4537 onsucsssucr 4542 onintonm 4550 ordsucunielexmid 4564 ordn2lp 4578 onsucuni2 4597 nlimsucg 4599 ordpwsucss 4600 tfrexlem 6389 nnsucuniel 6550 ctmlemr 7169 nnnninf 7187 nnnninfeq 7189 nnnninfeq2 7190 ctinf 12590 nnsf 15565 peano4nninf 15566 |
Copyright terms: Public domain | W3C validator |