Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordtr | GIF version |
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordtr | ⊢ (Ord 𝐴 → Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dford3 4352 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
2 | 1 | simplbi 272 | 1 ⊢ (Ord 𝐴 → Tr 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wral 2448 Tr wtr 4087 Ord word 4347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-iord 4351 |
This theorem is referenced by: ordelss 4364 ordin 4370 ordtr1 4373 orduniss 4410 ontrci 4412 ordon 4470 ordsucim 4484 ordsucss 4488 onsucsssucr 4493 onintonm 4501 ordsucunielexmid 4515 ordn2lp 4529 onsucuni2 4548 nlimsucg 4550 ordpwsucss 4551 tfrexlem 6313 nnsucuniel 6474 ctmlemr 7085 nnnninf 7102 nnnninfeq 7104 nnnninfeq2 7105 ctinf 12385 nnsf 14038 peano4nninf 14039 |
Copyright terms: Public domain | W3C validator |