ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ord0 GIF version

Theorem ord0 4481
Description: The empty set is an ordinal class. (Contributed by NM, 11-May-1994.)
Assertion
Ref Expression
ord0 Ord ∅

Proof of Theorem ord0
StepHypRef Expression
1 tr0 4192 . 2 Tr ∅
2 ral0 3593 . 2 𝑥 ∈ ∅ Tr 𝑥
3 dford3 4457 . 2 (Ord ∅ ↔ (Tr ∅ ∧ ∀𝑥 ∈ ∅ Tr 𝑥))
41, 2, 3mpbir2an 948 1 Ord ∅
Colors of variables: wff set class
Syntax hints:  wral 2508  c0 3491  Tr wtr 4181  Ord word 4452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-uni 3888  df-tr 4182  df-iord 4456
This theorem is referenced by:  0elon  4482  ordtriexmidlem  4610  2ordpr  4615  smo0  6442
  Copyright terms: Public domain W3C validator