![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ord0 | GIF version |
Description: The empty set is an ordinal class. (Contributed by NM, 11-May-1994.) |
Ref | Expression |
---|---|
ord0 | ⊢ Ord ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tr0 4124 | . 2 ⊢ Tr ∅ | |
2 | ral0 3536 | . 2 ⊢ ∀𝑥 ∈ ∅ Tr 𝑥 | |
3 | dford3 4379 | . 2 ⊢ (Ord ∅ ↔ (Tr ∅ ∧ ∀𝑥 ∈ ∅ Tr 𝑥)) | |
4 | 1, 2, 3 | mpbir2an 943 | 1 ⊢ Ord ∅ |
Colors of variables: wff set class |
Syntax hints: ∀wral 2465 ∅c0 3434 Tr wtr 4113 Ord word 4374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-v 2751 df-dif 3143 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-uni 3822 df-tr 4114 df-iord 4378 |
This theorem is referenced by: 0elon 4404 ordtriexmidlem 4530 2ordpr 4535 smo0 6313 |
Copyright terms: Public domain | W3C validator |