![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ord0 | GIF version |
Description: The empty set is an ordinal class. (Contributed by NM, 11-May-1994.) |
Ref | Expression |
---|---|
ord0 | ⊢ Ord ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tr0 4138 | . 2 ⊢ Tr ∅ | |
2 | ral0 3548 | . 2 ⊢ ∀𝑥 ∈ ∅ Tr 𝑥 | |
3 | dford3 4398 | . 2 ⊢ (Ord ∅ ↔ (Tr ∅ ∧ ∀𝑥 ∈ ∅ Tr 𝑥)) | |
4 | 1, 2, 3 | mpbir2an 944 | 1 ⊢ Ord ∅ |
Colors of variables: wff set class |
Syntax hints: ∀wral 2472 ∅c0 3446 Tr wtr 4127 Ord word 4393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-uni 3836 df-tr 4128 df-iord 4397 |
This theorem is referenced by: 0elon 4423 ordtriexmidlem 4551 2ordpr 4556 smo0 6351 |
Copyright terms: Public domain | W3C validator |