ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ord0 GIF version

Theorem ord0 4422
Description: The empty set is an ordinal class. (Contributed by NM, 11-May-1994.)
Assertion
Ref Expression
ord0 Ord ∅

Proof of Theorem ord0
StepHypRef Expression
1 tr0 4138 . 2 Tr ∅
2 ral0 3548 . 2 𝑥 ∈ ∅ Tr 𝑥
3 dford3 4398 . 2 (Ord ∅ ↔ (Tr ∅ ∧ ∀𝑥 ∈ ∅ Tr 𝑥))
41, 2, 3mpbir2an 944 1 Ord ∅
Colors of variables: wff set class
Syntax hints:  wral 2472  c0 3446  Tr wtr 4127  Ord word 4393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-uni 3836  df-tr 4128  df-iord 4397
This theorem is referenced by:  0elon  4423  ordtriexmidlem  4551  2ordpr  4556  smo0  6351
  Copyright terms: Public domain W3C validator