ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordeq GIF version

Theorem ordeq 4357
Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
ordeq (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))

Proof of Theorem ordeq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 treq 4093 . . 3 (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))
2 raleq 2665 . . 3 (𝐴 = 𝐵 → (∀𝑥𝐴 Tr 𝑥 ↔ ∀𝑥𝐵 Tr 𝑥))
31, 2anbi12d 470 . 2 (𝐴 = 𝐵 → ((Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥) ↔ (Tr 𝐵 ∧ ∀𝑥𝐵 Tr 𝑥)))
4 dford3 4352 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
5 dford3 4352 . 2 (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥𝐵 Tr 𝑥))
63, 4, 53bitr4g 222 1 (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wral 2448  Tr wtr 4087  Ord word 4347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-in 3127  df-ss 3134  df-uni 3797  df-tr 4088  df-iord 4351
This theorem is referenced by:  elong  4358  limeq  4362  ordelord  4366  ordtriexmidlem  4503  2ordpr  4508  issmo  6267  issmo2  6268  smoeq  6269  smores  6271  smores2  6273  smodm2  6274  smoiso  6281  tfrlem8  6297  tfri1dALT  6330
  Copyright terms: Public domain W3C validator