![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordeq | GIF version |
Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
ordeq | ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | treq 4109 | . . 3 ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) | |
2 | raleq 2673 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 Tr 𝑥 ↔ ∀𝑥 ∈ 𝐵 Tr 𝑥)) | |
3 | 1, 2 | anbi12d 473 | . 2 ⊢ (𝐴 = 𝐵 → ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥) ↔ (Tr 𝐵 ∧ ∀𝑥 ∈ 𝐵 Tr 𝑥))) |
4 | dford3 4369 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
5 | dford3 4369 | . 2 ⊢ (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥 ∈ 𝐵 Tr 𝑥)) | |
6 | 3, 4, 5 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∀wral 2455 Tr wtr 4103 Ord word 4364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-in 3137 df-ss 3144 df-uni 3812 df-tr 4104 df-iord 4368 |
This theorem is referenced by: elong 4375 limeq 4379 ordelord 4383 ordtriexmidlem 4520 2ordpr 4525 issmo 6291 issmo2 6292 smoeq 6293 smores 6295 smores2 6297 smodm2 6298 smoiso 6305 tfrlem8 6321 tfri1dALT 6354 |
Copyright terms: Public domain | W3C validator |