| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordeq | GIF version | ||
| Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| ordeq | ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | treq 4159 | . . 3 ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) | |
| 2 | raleq 2703 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 Tr 𝑥 ↔ ∀𝑥 ∈ 𝐵 Tr 𝑥)) | |
| 3 | 1, 2 | anbi12d 473 | . 2 ⊢ (𝐴 = 𝐵 → ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥) ↔ (Tr 𝐵 ∧ ∀𝑥 ∈ 𝐵 Tr 𝑥))) |
| 4 | dford3 4427 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
| 5 | dford3 4427 | . 2 ⊢ (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥 ∈ 𝐵 Tr 𝑥)) | |
| 6 | 3, 4, 5 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∀wral 2485 Tr wtr 4153 Ord word 4422 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-in 3176 df-ss 3183 df-uni 3860 df-tr 4154 df-iord 4426 |
| This theorem is referenced by: elong 4433 limeq 4437 ordelord 4441 ordtriexmidlem 4580 2ordpr 4585 issmo 6392 issmo2 6393 smoeq 6394 smores 6396 smores2 6398 smodm2 6399 smoiso 6406 tfrlem8 6422 tfri1dALT 6455 |
| Copyright terms: Public domain | W3C validator |