| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordeq | GIF version | ||
| Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| ordeq | ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | treq 4147 | . . 3 ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) | |
| 2 | raleq 2701 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 Tr 𝑥 ↔ ∀𝑥 ∈ 𝐵 Tr 𝑥)) | |
| 3 | 1, 2 | anbi12d 473 | . 2 ⊢ (𝐴 = 𝐵 → ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥) ↔ (Tr 𝐵 ∧ ∀𝑥 ∈ 𝐵 Tr 𝑥))) |
| 4 | dford3 4413 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
| 5 | dford3 4413 | . 2 ⊢ (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥 ∈ 𝐵 Tr 𝑥)) | |
| 6 | 3, 4, 5 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∀wral 2483 Tr wtr 4141 Ord word 4408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-in 3171 df-ss 3178 df-uni 3850 df-tr 4142 df-iord 4412 |
| This theorem is referenced by: elong 4419 limeq 4423 ordelord 4427 ordtriexmidlem 4566 2ordpr 4571 issmo 6373 issmo2 6374 smoeq 6375 smores 6377 smores2 6379 smodm2 6380 smoiso 6387 tfrlem8 6403 tfri1dALT 6436 |
| Copyright terms: Public domain | W3C validator |