ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordeq GIF version

Theorem ordeq 4350
Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
ordeq (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))

Proof of Theorem ordeq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 treq 4086 . . 3 (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))
2 raleq 2661 . . 3 (𝐴 = 𝐵 → (∀𝑥𝐴 Tr 𝑥 ↔ ∀𝑥𝐵 Tr 𝑥))
31, 2anbi12d 465 . 2 (𝐴 = 𝐵 → ((Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥) ↔ (Tr 𝐵 ∧ ∀𝑥𝐵 Tr 𝑥)))
4 dford3 4345 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
5 dford3 4345 . 2 (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥𝐵 Tr 𝑥))
63, 4, 53bitr4g 222 1 (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wral 2444  Tr wtr 4080  Ord word 4340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-in 3122  df-ss 3129  df-uni 3790  df-tr 4081  df-iord 4344
This theorem is referenced by:  elong  4351  limeq  4355  ordelord  4359  ordtriexmidlem  4496  2ordpr  4501  issmo  6256  issmo2  6257  smoeq  6258  smores  6260  smores2  6262  smodm2  6263  smoiso  6270  tfrlem8  6286  tfri1dALT  6319
  Copyright terms: Public domain W3C validator