ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordeq GIF version

Theorem ordeq 4432
Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
ordeq (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))

Proof of Theorem ordeq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 treq 4159 . . 3 (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))
2 raleq 2703 . . 3 (𝐴 = 𝐵 → (∀𝑥𝐴 Tr 𝑥 ↔ ∀𝑥𝐵 Tr 𝑥))
31, 2anbi12d 473 . 2 (𝐴 = 𝐵 → ((Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥) ↔ (Tr 𝐵 ∧ ∀𝑥𝐵 Tr 𝑥)))
4 dford3 4427 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
5 dford3 4427 . 2 (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥𝐵 Tr 𝑥))
63, 4, 53bitr4g 223 1 (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wral 2485  Tr wtr 4153  Ord word 4422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-in 3176  df-ss 3183  df-uni 3860  df-tr 4154  df-iord 4426
This theorem is referenced by:  elong  4433  limeq  4437  ordelord  4441  ordtriexmidlem  4580  2ordpr  4585  issmo  6392  issmo2  6393  smoeq  6394  smores  6396  smores2  6398  smodm2  6399  smoiso  6406  tfrlem8  6422  tfri1dALT  6455
  Copyright terms: Public domain W3C validator