![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordeq | GIF version |
Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
ordeq | ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | treq 3964 | . . 3 ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) | |
2 | raleq 2576 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 Tr 𝑥 ↔ ∀𝑥 ∈ 𝐵 Tr 𝑥)) | |
3 | 1, 2 | anbi12d 458 | . 2 ⊢ (𝐴 = 𝐵 → ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥) ↔ (Tr 𝐵 ∧ ∀𝑥 ∈ 𝐵 Tr 𝑥))) |
4 | dford3 4218 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
5 | dford3 4218 | . 2 ⊢ (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥 ∈ 𝐵 Tr 𝑥)) | |
6 | 3, 4, 5 | 3bitr4g 222 | 1 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1296 ∀wral 2370 Tr wtr 3958 Ord word 4213 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-in 3019 df-ss 3026 df-uni 3676 df-tr 3959 df-iord 4217 |
This theorem is referenced by: elong 4224 limeq 4228 ordelord 4232 ordtriexmidlem 4364 2ordpr 4368 issmo 6091 issmo2 6092 smoeq 6093 smores 6095 smores2 6097 smodm2 6098 smoiso 6105 tfrlem8 6121 tfri1dALT 6154 |
Copyright terms: Public domain | W3C validator |