Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordeq | GIF version |
Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
ordeq | ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | treq 4093 | . . 3 ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) | |
2 | raleq 2665 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 Tr 𝑥 ↔ ∀𝑥 ∈ 𝐵 Tr 𝑥)) | |
3 | 1, 2 | anbi12d 470 | . 2 ⊢ (𝐴 = 𝐵 → ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥) ↔ (Tr 𝐵 ∧ ∀𝑥 ∈ 𝐵 Tr 𝑥))) |
4 | dford3 4352 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
5 | dford3 4352 | . 2 ⊢ (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥 ∈ 𝐵 Tr 𝑥)) | |
6 | 3, 4, 5 | 3bitr4g 222 | 1 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∀wral 2448 Tr wtr 4087 Ord word 4347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-in 3127 df-ss 3134 df-uni 3797 df-tr 4088 df-iord 4351 |
This theorem is referenced by: elong 4358 limeq 4362 ordelord 4366 ordtriexmidlem 4503 2ordpr 4508 issmo 6267 issmo2 6268 smoeq 6269 smores 6271 smores2 6273 smodm2 6274 smoiso 6281 tfrlem8 6297 tfri1dALT 6330 |
Copyright terms: Public domain | W3C validator |